
Ankou: Guiding Grey-box Fuzzing towards
Combinatorial Difference

Valentin J.M. Manès
CSRC, KAIST

Daejeon, Korea

valentinmanes@outlook.fr

Soomin Kim
KAIST

Daejeon, Korea

soomink@kaist.ac.kr

Sang Kil Cha
KAIST

Daejeon, Korea

sangkilc@kaist.ac.kr

ABSTRACT

Grey-box fuzzing is an evolutionary process, which maintains and

evolves a population of test cases with the help of a fitness function.

Fitness functions used by current grey-box fuzzers are not informa-

tive in that they cannot distinguish different program executions as

long as those executions achieve the same coverage. The problem

is that current fitness functions only consider a union of data, but

not their combination. As such, fuzzers often get stuck in a local

optimum during their search. In this paper, we introduce Ankou,

the first grey-box fuzzer that recognizes different combinations of

execution information, and present several scalability challenges

encountered while designing and implementing Ankou. Our exper-

imental results show that Ankou is 1.94× and 8.0× more effective

in finding bugs than AFL and Angora, respectively.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging; • Security and privacy→ Software security engineer-

ing.

KEYWORDS

fuzz testing, guided fuzzing, grey-box fuzzing, software testing,

principal component analysis

ACM Reference Format:

Valentin J.M. Manès, Soomin Kim, and Sang Kil Cha. 2020. Ankou: Guiding

Grey-box Fuzzing towards Combinatorial Difference. In 42nd International

Conference on Software Engineering (ICSE ’20), May 23–29, 2020, Seoul, Re-

public of Korea. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/

3377811.3380421

1 INTRODUCTION

Fuzzing has recently gained popularity thanks to its proven record

and its ease of use [37]. It has identified thousands of real-world

vulnerabilities from a variety of software [6], and it has been de-

veloped by numerous security practitioners as well as academic

researchers. Furthermore, it does not necessitate much information

from the analyst beyond the entry point setup and optionally an

initial set of test cases, so-called seeds.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380421

Seeds provide initial starting points for fuzzing. A seed corre-

sponds to a program execution, and fuzzers can explore program

paths mostly around this execution. Therefore, seeds need to be

dynamically added or removed from the initial seed pool during a

fuzzing campaign in order to efficiently explore the program state

space. Grey-box fuzzers perform such a process by using a fitness

function, which decides the quality of a given test case. As the seed

pool evolves, fuzzers tend to generate more test cases that meet the

fitness criteria enforced by the fitness function.

The current consensus is to leverage code coverage, such as

branch coverage, as their fitness function. For instance, if a test case

covers a new branch in the program under test, then we add it to

the pool as it meets the fitness criterion. The actual implementation

varies for each fuzzer, but they share the same idea: they prefer test

cases that achieve new code coverage.

Despite its wide use, the current strategy of using code coverage

as a fitness function suffers from critical information loss. Since

code coverage only considers a union of information, if any one

of the tested executions exercises a branch, for instance, then the

branch is regarded as visited. As such, fuzzers can easily disregard

test cases that do not improve code coverage even if they allow our

fuzzers to exercise valuable execution paths. However, bugs often

manifest when we exercise a specific execution path, but not when

we visit a specific code snippet. For example, buffer overflow bugs

do not occur when we visit the buggy loop, but they show up only

when we exercise the loop more than a certain threshold.

Unfortunately, handing the aforementioned issue is challenging

for the following three reasons: (C1) our fitness function should

be informative in that it can quantify difference between program

executions, (C2) our fitness function should be computationally fast

while still being informative, and (C3) our fitness function should

not accept too many seeds in the seed pool to be able to handle

them in a practical manner.

First, our fitness function should be able to sensitively quantify

program executions. That is, given two program executions, we

need to be able to decide which one fits better for future fuzzing.

Suppose we want to use path coverage as a fitness function. That

is, if a test case exercises an unseen path, we consider it to meet

the fitness criterion. In this case, the fitness function itself cannot

judge the relative importance between test cases because the fitness

function can only make a binary decision. The same problem exists

for any coverage-based fitness function.

Second, computing informative fitness itself can be too costly.

Since program executions naturally incorporate millions of instruc-

tions alongwith complex semantics, extracting their comprehensive

information from an execution is typically an expensive process.

Furthermore, the time complexity of a fitness function is critical

1024

2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE)

for grey-box fuzzing as we will have to invoke the fitness function

for every test case generated during a fuzzing campaign.

Third, merely employing an informative fitness function can

quickly make grey-box fuzzing unproductive as our fuzzer would

admit too many seeds in the seed pool. For instance, one may

produce a seed for every single path if we use path coverage as a

fitness function. In this case, it may not even be possible for the

fuzzer to give a trial for every seed in the pool.

In this paper, we tackle all the above challenges by introducing

a novel fuzzing technique that we refer to as distance-based fuzzing.

It leverages an informative fitness function that we call distance-

based fitness function to deal with (C1). It also employs a novel

dimensionality reduction technique that we call dynamic PCA to

handle (C2). Lastly, it manages its seed pool with a technique called

adaptive seed pool update for (C3).

Distance-based fuzzing employs an informative fitness function

that we refer to distance-based fitness function to handle (C1). It

measures the behavioral similarity between two executions by ex-

amining the combinations of exercised branches. The key intuition

is to expand our view from a set of program elements (such as

branches) to a set of combinations of program elements. By chang-

ing our perspective, we can easily identify the uniqueness of an

execution in contrast to other executions even if the execution

does not achieve novel code coverage. Note our fitness function

only leverages readily available information in most state-of-the-art

fuzzers, namely branch coverage (see §2.1).

Although the idea of distance-based fitness function integrates

well with grey-box fuzzing, it is still challenging to adopt it in

practice as computing the fitness itself is computationally expensive.

This is mainly because we need to deal with a higher number of

states as our fitness function gets more informative. According to

our study, fuzzing with our distance-based fitness function makes

fuzzers 13.2× slower.

To tackle this challenge (C2), we present dynamic PCA, which

is inspired by a well-known statistical approach called Principal

Component Analysis (PCA) [27]. PCA reduces the dimensionality

of a data set while guaranteeing to preserve the maximum amount

of information from the original set. However, PCA itself is com-

putationally too expensive to be used with fuzzing. We cannot run

PCA for every fuzzing iteration for the same reason the distance-

based fitness cannot be directly used for fuzzing. To the best of our

knowledge, none of the existing PCA variations suits our needs.

Therefore, we present a novel and practical dimensionality re-

duction technique that we call dynamic PCA. The core idea is to

make the PCA computation to be incremental so that we do not

need to recompute PCA from scratch. Our empirical study demon-

strates that dynamic PCA can efficiently reduce the computational

cost of the distance-based fitness function while introducing only

18% of information loss on average.

Finally, we introduce adaptive seed pool update to effectively

manage the size of the seed pool (C3). The crux of our approach is to

dynamically adjust the sensitivity of our pool update function based

on the relative difference between program executions. Since our

distance-based fitness function can quantify differences between

program executions by its design, we can compare test cases based

on their fitness to actively decide the sensitivity of the pool update

function. In our study, Ankou without adaptive seed pool update

was not functioning due to the excessive memory requirement and

fitness computation cost.

To demonstrate our ideas, we designed and implemented Ankou,

our prototype fuzzer, which leverages distance-based fitness func-

tion, dynamic PCA, as well as adaptive seed pool update to tackle

all the three challenges. We performed a thorough evaluation for

Ankou on 24 real-world application packages by spending a total

of 2,682 CPU days. The results are promising, Ankou is 1.94× and

8.0× better in finding unique crashes compared to AFL [58] and

Angora [14], respectively. Moreover, Ankou found a large variety

of previously unknown software bugs in real-world software.

In summary, our contributions are as follows.

(1) We present an informative fitness function for grey-box

fuzzing that we call distance-based fitness function.

(2) We introduce dynamic PCA, which is a novel approach to

dynamically reduce the dimensionality of the distance-based

fitness computation.

(3) We design and implement Ankou, the first fuzzer prototype

for distance-based fuzzing.

(4) We create our own benchmark, which consists of 24 real-

world application packages, and we make it public.

(5) We make our source code along with our benchmark pub-

lic on GitHub to support open science: https://github.com/

SoftSec-KAIST/Ankou.

2 BACKGROUND

This section presents fundamental concepts required to understand

the proposed idea, and defines several necessary terminologies that

we use throughout the paper.

2.1 Fitness and Local Optimum Problem

Current grey-box fuzzers primarily use code coverage as their fit-

ness function: we add a test case to the seed pool if it achieves new

code coverage. However, coverage-guided fuzzing strategies can

miss out critical test cases that may guide fuzzers towards unseen

execution paths while not necessarily improving the code coverage

per se. We say we have reached a local optimum [30] as we cannot

obtain any more test cases that fulfill our fitness criterion even

though we have not yet tested all possible executions of the PUT.

This is certainly the case for fuzzing because some bugs can

only be triggered when a specific execution path is exercised. For

example, traditional buffer overflow bugs trigger when we exercise

a loop more than a certain threshold, but not when we simply

visited the loop; both the node and the branch coverage would

remain the same.

To mitigate this problem, AFL [58] and its descendants [10, 11,

14, 32, 33] employ a modified version of branch coverage, which

takes account of a hit count for each unique branch in the PUT.

Note that the modified coverage can represent a greater number

of program states compared to branch coverage: two executions

may hit branches for different number of times while achieving

the same branch coverage. We call such information gathered from

every program execution by AFL as branch-hit-count state1.

1Note that AFL introduces another approximation in their actual implementation: it
bucketizes hit counts by powers of two to roughly measure how often each branch is

1025

0 2 4 6 8 10
0

2

4

6

Branch hit count for branch 1

B
ra
n
ch

h
it
co
u
n
t
fo
r
b
ra
n
ch

2

Figure 1: A hypothetical example showing branch-hit-count

states of 30 unique program executions. Each dot represents

a branch-hit-count state �x .

Definition 2.1 (Branch-Hit-Count State). Given a program p and
an input t , the branch-hit-count state ϵp (t) is a vector

ϵp (t) =

⎡⎢⎢⎢⎢⎢⎣
x1
...

xn

⎤⎥⎥⎥⎥⎥⎦
= �x

where n is the number of branches in p, and xi is the number of
hits for branch i in the execution. For simplicity, we let the branch-
hit-count state with a vector notation �x .

We note, however, that the fitness functions using branch-hit-

count states still suffer from the local optimum problem. For exam-

ple, let us consider a simple program p that has only three branches,
and assume that three test cases t1, t2, and t3 respectively pro-

duce the branch-hit-count states ϵp (t1) = (1, 1, 2), ϵp (t2) = (1, 1, 0),
and ϵp (t3) = (0, 1, 2). Suppose t1 is firstly given, and t2 and t3 are
produced while fuzzing the program. In this case, current fuzzers

including AFL will favor t1 as it can solely cover all the branches,
and thus, t2 and t3 will be considered redundant, and will not be
included in the population. Indeed, this is the key observation that

motivates our research.

2.2 Principal Component Analysis

Principal Component Analysis (PCA) [27] is a way of reducing the

dimensionality of a dataset while preserving as much information

as possible. To understand the basic process of PCA, let us consider

a hypothetical example where there is a program p with only two
branches. Each execution of the program will produce a branch-

hit-count state �x = (x1, x2), which contains two hit-count numbers
for each branch. Suppose our fuzzer has produced 30 test cases,

which exercise 30 unique program executions. Figure 1 illustrates

this example. Each dot represents a branch-hit-count state obtained

by an execution, and the X- and Y-axis represent the hit count for

branch 1 and 2, respectively.

The goal of PCA, in this example, is to obtain an 1-D plot from

the 2-D plot in such a way that all the points in the resulting plot

have the largest variance. For example, the dashed line in Figure 1

shows such an axis. If we project all the points onto the new axis,

i.e., the dashed line, then we obtain the maximum possible variance

between dots in the resulting 1-D plot.

exercised. We intentionally omit such details for brevity, but we note that it does not
impact our analyses.

In this paper, we let PCA be a function that takes in a space

representation as input, and returns an updated space representa-

tion as output. A space representation is a tuple of a basis B and a

covariance matrix Σ. That is, PCA is a function of type

PCA : (B,Σ) → (B′,Σ′).

The returned space representation has a reduced dimensionality

and each axis, i.e., each column vector of B′, is linearly independent

to the other ones.

In the context of PCA, the tuple of a basis matrix and a covari-

ance matrix effectively describes all the necessary information. A

covariance matrix is a symmetric matrix representing how each

data component are affected by each other. Since the example plot is

on a 2-D Euclidean space, we can represent its basis as a 2 standard

basis matrix.

B =

[
1 0

0 1

]
.

To represent the relationship between the two components of Fig-

ure 1, we consider a 2 × 2 covariance matrix Σ of the space. Each

element in the (i, j) position is the covariance between the i-th and
j-th components.

Σ =

[
6.930 2.728

2.728 2.231

]
.

The element in (1,1) represents the covariance between the first

component and itself, which means the variance of the first compo-

nent. The elements in (1, 2) and (2, 1) are the same as the covariance

between two components is the same regardless of their order.

In the perspective of linear algebra [52], PCA is equivalent to

an eigendecomposition process on the given covariance matrix,

which returns a diagonal matrix Σ′ and a basis matrix B′. The basis

B
′ contains eigenvectors as its column vectors, which represents

the axes of a new coordinate system. Σ′ has the eigenvalues on its

diagonal entries, which are the variances of the corresponding new

axes. Specifically when applied to Σ above, we obtain the following

covariance matrix and basis matrix.

Σ
′ =

[
8.180 0

0 0.981

]
, and B′ =

[
0.909 0.417

0.417 −0.909

]
.

In order to maximize the variance of the lower dimensionality

space, we chose the axes with the highest variances. In this case,

since it has a variance of 8.180, we select the vector [0.909, 0.417],

which corresponds to the dashed line of Figure 1. This becomes our

new axis of the desired 1-D plot.

3 DISTANCE-BASED FUZZING FITNESS

The key challenge that we address here (C1) is designing an infor-

mative fitness function for grey-box fuzzing, which can sensitively

quantify the difference between test cases and their corresponding

executions on the PUT. Remarkably, we found that the branch-hit-

count states used by current fuzzers already provide just enough

information about test cases for judging their potential to be used

as a future seed. The idea is to consider each branch-hit-count state

as a vector, as defined in §2.1, which enables us to compute relative

distances between them.

Since we are dealing with relative distances, two distinct ex-

ecutions that achieve the same coverage, but produce different

branch-hit-count states would represent two unique vectors in the

1026

space, and we can naturally quantify their difference compared to

the other vectors in the space. Indeed this is the key intuition of

our distance-based fitness function.

3.1 Fitness as Distance between Vectors

In our model, a branch-hit-count state corresponds to a vector in

a space that we call the branch-hit-count state space Ωp , which is
formally defined as follows. For any test case t , we can obtain a
branch-hit-count state ϵp (t) in Ωp by executing p with t .

Definition 3.1 (Branch-Hit-Count State Space). Given a program p,
the branch-hit-count state space of p, Ωp , is the set of all possible
branch-hit-count states we can obtain by executing p.

With this, we now introduce the concept of execution distance,

which measures the relative distance between two branch-hit-count

states, thereby determining the difference between their two execu-

tions. Note that the distance between two vectors is dependent on

which space we are in. Thus, our definition of execution distance

takes a basis B into account.

Definition 3.2 (Execution Distance). Given a program p and a

basis B, any pair of branch-hit-count states in Ωp have an execution
distance δB on the space defined by B, which is simply defined as
the Euclidean distance

∀(�x, �y) ∈ Ω2p , δB(�x, �y) = ‖ �x
T
B − �yT B‖.

Intuitively, two executions are similar to each other when their

execution distance is small, and vice versa. For example, suppose

there is a program with only three branches, and there are three

executions of the program, which result in the branch-hit-count

states �x = (3, 0, 1), �y = (3, 0, 0), and �z = (0, 1, 1), respectively. In this
case, we can readily determine that �x and �y are similar to each other
as the first branch is exercised three times in both cases, unlike �z. Al-
though branch hit counts do not completely reflect the semantics of

the program executions, we can still extract meaningful distinction

between executions.

Since a test case produces an execution for a given PUT, we can

compare two test cases for the PUT by leveraging their execution

distances. That is, the execution distance allows us to compute

the difference between given test cases with respect to the PUT.

Therefore, we devise a new fitness function to quantify the novelty

of a given test case compared to the current population, i.e., test

cases in the seed pool. Let Π = {t1, t2, · · · , tm } be a seed pool ofm
test cases, the distance-based fitness of a newly generated t is then
the minimum execution distance between t and all the seeds in Π.
As execution distance can vary depending on the current space we

are in, the definition of distance-based fitness function also takes

the current space (B) into account.

Definition 3.3 (Distance-based Fitness Function). Given a pro-

gram p and a basis B, the distance-based fitness ΔB(t,Π) of a test
case t with regard to a seed pool Π is the minimum execution dis-

tance between ϵp (t) and a set {∀i ∈ Π : ϵp (i)} on the space defined
by B. Formally, the distance-based fitness function is

ΔB(t,Π) = min
i ∈Π

δB(ϵp (t), ϵp (i)).

With the distance-based fitness function, we can now quantify

the difference between a test case and a pool of test cases. For

example, let us consider the test cases with the following states:

ϵp (t1) = (1, 1, 2), ϵp (t2) = (0, 1, 1), ϵp (t3) = (1, 0, 2), and ϵp (t4) =
(0, 3, 3). Assume the current seed pool contains the first two seeds

{t1, t2}, and our fuzzer has generated the test case t3 and t4. We

can now compare the two test cases, decide which is the fittest

and include it in the pool. Using the standard basis as B, we obtain

ΔB(t3, {t1, t2}) = 1, and ΔB(t4, {t1, t2}) ≈ 2.45. Since t4 execution
is further away from the seed pool, its inclusion in the pool brings

more novelty than t3 would. Hence, t4 is a better fit. Although
neither test cases bring new coverage, this is representative of how

the combination of their branch-hit-count differs. t3 execution only
differs from t1 on the second branch, while t4 differs from t1 on all
the branches.

3.2 Impracticality of Distance-based Fitness

Our distance-based fitness function is indeed informative—it pro-

vides a way to effectively quantify the fitness of generated test

cases—but such benefit comes with a price. Although it does not

require any new coverage metric to be introduced, it is not fea-

sible to apply the idea directly to current fuzzers due to its high

computational cost.

Since we have to compute the fitness for every generated test

case, the performance of fitness computation is critical. Unfortu-

nately, its time complexity is roughlyO(mn), wherem is the number

of seeds in our seed pool, and n is the number of branches in the
PUT. Note that there can be easily thousands of seeds in the popula-

tion as well as thousands of branches in the PUT. This is indeed the

challenge (C2) that we address in the paper. To make our approach

practical, we need to reduce one of the terms.

One plausible way to improve the performance is to employ a

specialized data structure designed for efficient distance queries,

such as M-tree [16]. It allows us to reduce the number of seeds

to look for without any loss of information. However, it does not

guarantee any practical lower bound. In a preliminary study we per-

formed, we only observed about 70% of performance improvement

withM-tree, which was far from enough to make the distance-based

fitness function practical for fuzzing.

Therefore, we address this impracticality challenge by reducing

the dimensionality of the branch-hit-count states, which effectively

reduces n, the number of branches to consider. Recall that PCA
(as introduced in §2.2) is a well-known methodology for reducing

the dimensionality of a dataset while minimizing the loss of in-

formation. The goal here is to reduce the dimensionality of the

branch-hit-count state space, which can drastically improve the

performance of our fitness function computation. Nevertheless, this

new intermediary step introduces its own challenges as we describe

in the following section.

4 DYNAMIC PCA

The high computational demand of distance-based fitness function

naturally leads us to the second challenge (C2). To tackle the chal-

lenge, we introduce dynamic PCA, a novel technique for reducing

the dimensionality of the branch-hit-count states.

As the name implies, dynamic PCA is inspired by PCA, but PCA

itself does not perfectly meet our needs for several reasons. First,

1027

PCA itself is computationally expensive: it has a cubic-time com-

plexity in the number of samples and dimensions [21]. Second, the

underlying probability distribution we are sampling from changes

every time as the seed pool varies: grey-box fuzzing creates a dy-

namic environment. This means we would need to compute PCA

every time we add a new seed to our pool, but its cost would be-

come extremely high. As we will explain in §8, several variations of

PCA have been introduced, none of them suits our case. Dynamic

PCA overcomes these challenges by presenting an efficient approx-

imation of PCA, which eventually enables the practical use of the

distance-based fitness for grey-box fuzzing.

4.1 Algorithm Overview

At a high level, dynamic PCA achieves its performance improvement

by (1) reducing the number of times eigendecomposition is run, and

(2) limiting the number of axes in the space to perform eigendecom-

position on. Dynamic PCA periodically runs eigendecomposition,

i.e., the standard PCA, for every time interval we choose, which is

one minute in the current implementation. It maintains a reduced

covariance matrix and incrementally updates the matrix. When we

perform eigendecomposition, we run it only on the reduced matrix.

The DynPCA function in Algorithm 1 describes the main algo-

rithm, which roughly takes in a space representation (B, Σ), and

returns an updated one. The initial space representation is obtained

by running the standard PCA for the seeds in the initial seed pool

given by the user. Unlike the standard PCA we described in §2.2,

though, it also takes in three more parameters as input: (1) �x is the

branch-hit-count state obtained by executing the currently gener-

ated test case, which is required to update the space information; (2)

s is the number of generated test cases; and (3) θexp is a variable au-
tomatically set by our algorithm, whose initial value is the infinity

∞. Dynamic PCA operates with three major functions: ExpandBa-

sisIfInteresting, UpdateCovMatrix, and PeriodicDecompose.

ExpandBasisIfInteresting checks whether the branch-

hit-count state �x suffers a large information loss when pro-
jected on B. If it does, then we consider �x as an “interesting”

vector, and add it to our basis B as an extra axis (see §4.2).

UpdateCovMatrix updates the current covariance matrix

Σwith regard to the given branch-hit-count state �x (see §4.3).
Note that Σ effectively summarizes the branch-hit-count

states of all the test cases the fuzzer observed so far.

PeriodicDecompose periodically readjusts the basis B ev-

ery minute by running the standard PCA. The current time

interval is empirically chosen, but it is a user configurable

parameter in our implementation. Note that this function

needs to handle only a reduced space returned by the previ-

ous steps. That is, the number of axes in B is several orders

of magnitude smaller than the total number of branches in

the PUT. This is indeed the key to our approach.

Information Loss due to Dynamic PCA. Although dynamic PCA

makes it efficient to compute the principal components of a given

space representation, it loses the guarantee of maximizing the vari-

ance of the reduced space. Nonetheless, our empirical result shows

that the information loss caused by dynamic PCA is 20% or less in

most subjects we tested (see §6.3). Therefore, dynamic PCA can be

a practical alternative to standard PCA.

Algorithm 1: Dynamic PCA

// θexp is globally given, and initially set to ∞.

1 function ExpandBasisIfInteresting(B, Σ, �x)

2 loss←

√
‖ �x ‖2 − ‖ �xT B‖2 // By Pythagoras

3 if loss > θexp then

4 B, Σ← Append(B, Σ, �x)

5 B← GramSchmidt(B)

6 θexp ← UpdateLoss(θexp, loss)

7 return B, Σ

8 function PeriodicDecompose(B, Σ)

9 if IsOneMinutePassed() then

10 B, Σ← PCA(B, Σ)

11 return B, Σ

// The main function

12 function DynPCA(B, Σ, �x , s)

13 B, Σ← ExpandBasisIfInteresting(B, Σ, �x)

14 Σ← UpdateCovMatrix(B, Σ, �x , s)

15 B
′, Σ′ ← PeriodicDecompose(B, Σ)

16 return B′, Σ′

4.2 Incremental Basis Expansion

In ExpandBasisIfInteresting, the information loss caused by

projecting the execution on B is quantified by loss in Line 2. In

Line 3, the loss is considered significant if above the threshold θexp.
Then, in Line 4, the new branch-hit-count state, which is a vector

by definition, is appended to the basis and the covariance matrix Σ

is expanded by one row and one column. The new basis B is then

orthonormalized by Gram-Schmidt [53] in Line 5.

To get a better understanding, let us consider the previous ex-

ample illustrated in Figure 1. There are only two branches in the

program and we have 30 initial seeds, one for each point in the plot.

The initial B and Σ are set using the standard PCA on the initial

seeds. Note that this is an expensive operation as the branch-hit-

count state is likely to have many dimensions. We can only afford it

once at the initialization. Now, let us assume that the first test case

we generate manifests the branch-hit-count state �x = (1, 100). We

pass the state to DynPCA, and we reach the ExpandBasisIfInter-

esting function. The branch-hit-count state is indeed a large outlier,

which will pass the test in Line 3 of ExpandBasisIfInteresting.

Therefore, this vector will be appended to B, and then orthonor-

malized into
[
−0.417, 0.909

]
by the Gram-Schmidt [53] procedure.

The following test cases and their branch-hit-count states will be

projected onto the new 2-D basis until the call to the PCA function

in PeriodicDecompose will reconsolidate B into a single vector.

Additionally, ExpandBasisIfInteresting updates the expansion

threshold θexp in Line 6. UpdateLoss records all the loss values in
the past minute and sets θexp to the maximum of the held data. In

our experiments, this was enough to make dynamic PCA maintain

a sufficient number of new axes while keeping the computational

cost low. Optimizing UpdateLoss is beyond the scope of this paper.

4.3 Dynamically Updating Covariance Matrix

As we generate test cases, we should also incrementally update

our covariance matrix to take account of newly sampled test cases

1028

added to our space. However, there is an issue to be addressed for

updating our covariance matrix. PCA assumes that our sampling

process is performed on a constant probability distribution, but this

is not the case for grey-box fuzzers where a change in the seed pool

implies a change in the sampling process.

To address this problem, we implement UpdateCovMatrix to

include a discount factor α in order to favor newer test cases rather

than older ones. Particularly, every timewe updateΣ, we give higher

weights to newer test cases by progressively decreasing weights

to the previous covariance matrix. Formally, given the (s + 1)-th
generated test case, which produces �x , the UpdateCovMatrix
operates by updating Σ′ as follows.

Σ
′ =

(�xT B) · (�xT B)T + αwsΣ

1 + αws
, wherews = 1+α +α

2+ · · ·+αs−1.

If α is set to 0, then we completely ignore the history, and we end up

solely using the latest test case to construct Σ′. On the other hand,

when α = 1, the term αws becomes s , and the resulting formula
simply represents an incremental mean where s is the total number
of elements. When α is between zero and one, we effectively give

a weight of αws to the old covariance matrix Σ in order to give

the decreasing influence to it as time passes. The lower α is, the

more we forget about the past. Note that the old covariance matrix

represents s total test cases generated so far where the first test case

has a weight α (s−1). We empirically set α to 1− 10−6 in our current

implementation. Although not explicitly mentioned for brevity, the

branch-hit-count state �x is centered before being projected on B.

5 DISTANCE-BASED FUZZING

In this section, we first show a way to dynamically adjust the sensi-

tivity of our fitness function to handle (C3). The primary issue here

is that an informative fitness function such as our distance-based

fitness function would accept too many seeds in the pool. To set

the sensitivity of the fitness function, we introduce adaptive seed

pool update, a novel population update mechanism that dynami-

cally changes its fitness criterion. With this, we present the design

and implementation of Ankou, our fuzzer prototype that enables

distance-based fuzzing by addressing all three challenges (C1, C2,

and C3). Ankou leverages the distance-based fitness function (see

§3) to obtain informative feedback, and employs the dynamic PCA

(see §4) to efficiently compute the distance-based fitness function.

It also uses adaptive seed pool update to dynamically changes its

fitness criterion.

5.1 Adaptive Seed Pool Update

The distance-based fitness of a test case characterizes its novelty

compared to the current population, but having a way to measure

novelty (or fitness) does not tell us when should we add our test

case to the seed pool. Of course, we can add our test case to the

pool when its distance-based fitness is above a threshold, but what

should be the value of the threshold then? Note that the choice

of this threshold is critical as it sets the sensitivity of a fuzzer to

new behaviors of the PUT. If it is infinitely high, the seed pool is

constant and the population does not evolve. On the other hand, if

the threshold is set to zero, any test case will be added to the pool,

which can quickly pack the seed pool.

Algorithm 2: Adaptive seed pool update.

// The space information (B, Σ) is globally given.

// θfit is globally given, and initially set to zero.

1 function PoolUpdate(t, s, Π)
2 B, Σ← DynPCA (B, Σ, ϵp(t), s)

3 if ΔB(t, Π) > θfit then

4 Π′ ← AddToPool(t, Π)

5 θfit ← mini∈Π′ ΔB(i , Π
′ \ {i })

6 return Π′

7 else return Π

Thus, we propose adaptive seed pool update, a novel technique

that dynamically selects the threshold to adaptively control the

sensitivity of our fuzzer. The PoolUpdate function in Algorithm 2

describes the overall algorithm, which takes in a newly generated

test case t , the total number of test cases generated so far s , and the
seed pool Π as input. It then outputs an updated seed pool Π′. In
Line 2, we perform dynamic PCA in order to make our fitness func-

tion computation ΔB efficient. We then check if the distance-based

fitness is bigger than the fitness threshold θfit, which is initially
given as zero. If so, we update both the seed pool and the threshold

in Line 4 and 5. The AddToPool function in Line 4 first pops out

the seed with the lowest distance to the population, and then add

our test case t to the pool. That is, we remove the least fit test case
from the pool while adding a new one. To maintain a sufficient

amount of seeds, AddToPool will only remove a test case when

the pool has 1,000 or more seeds in our current implementation.

In Line 5, we compute the distance-based fitness for all the seeds

in the pool, and set the current minimum fitness as a new threshold.

The intuition here is that in order for a test case to be useful, it

should be at least further away from the pool than the smallest gap

between the seeds. More formally, we set the next threshold θfit by

θfit = min
i ∈Π

ΔB(i,Π \ {i}) = min
(i1,i2)∈Π2,i1�i2

δB(ϵp (i1), ϵp (i2)).

Practical Impact of Adaptive Seed Pool Update. To understand the

impact of adaptive seed pool update, we performed a preliminary

study where we ran Ankou without adaptive seed pool update on a

subject in our benchmark. As a result, Ankou was killed by the OS

due to its excessive memory use after a few minutes. During its run,

Ankou was mostly spending its time computing ΔB in Line 3. Since
there are too many seeds in the pool, its computational cost, even

with dimensionality reduction, became too extreme to be able to

run in practice. Thus, we conclude that adaptive seed pool update

is an essential piece of distance-based fuzzing.

5.2 Ankou Architecture

Ankou follows the general architecture of grey-box fuzzing, which

consists of three major components: seed scheduler, pool manager,

and tester. Figure 2 illustrates the overall design of Ankou. The

seed scheduler selects a seed for fuzzing and passes it to the tester

module. The tester then generates inputs by mutating the given

seed and run the PUT. Upon the PUT execution, the tester passes

the execution trace to the fitness function of the pool manager,

which computes its fitness value. The PoolUpdate function in the

1029

Figure 2: Ankou architecture.

pool manager module then updates this value with the adaptive

seed pool update technique.

Note that the only difference between existing grey-box fuzzers

and Ankou is in the design of the pool manager module. Particularly,

Ankou uses the adaptive seed pool update for pool update, and the

distance-based fitness function enabled by the dynamic PCA. Any

grey-box fuzzers can easily benefit from distance-based fuzzing.

5.3 Implementation

Ankou is built upon our own AFL implementation in Go [3]. It is

a simplified version of AFL, which implements most of the AFL’s

features, but not all. For instance, our implementation does not

include culling since Ankou performs it on-the-fly in Line 4 of

Algorithm 2. Ankou does not implement the seed prioritization

heuristics employed by AFL, where seeds having fast throughput

and high coverage are likely to get a higher priority. Since our goal

in this paper is on designing a new fitness function for grey-box

fuzzing, we intentionally omitted such heuristics in our implemen-

tation to effectively measure the impact of our fitness function.

Instead, Ankou chooses seeds from the seed pool at random and

generates test cases for a constant time interval, which is currently

one second in the current implementation.

Our current implementation of Ankou consists of 8K lines of

Go (as measured by CLOC [18]). We used the Gonum numeric

library [4] in order to implement the PCA function. Ankou em-

ploys the same instrumentation module provided by the vanilla

AFL [58]. Therefore, Ankou can easily support ASan [49] and AFL-

lafintel [29]. We make our prototype implementation as well as our

benchmark publicly available on GitHub [38].

6 EVALUATION

We evaluated Ankou on the following research questions.

(1) How much was the speed gain enabled by dynamic PCA and

what was its impact on bug discovery?

(2) Can dynamic PCA effectively reduce space dimensionality

without significant information loss?

(3) How does the distance-based fitness function compare to

coverage-based fitness function?

(4) Howmuch is the computational cost of distance-based fuzzing?

(5) How does Ankou compare to other grey-box fuzzers?

6.1 Experimental Setup

Basic Setup. We performed our experiments on two server ma-

chines, each of which is equipped with 44 Intel Xeon E5-2699 v4

cores and 512GB of RAM. For every fuzzing campaign, we used a

Docker container assigned to a single core. Unless stated otherwise,

all the reported numbers are the average of six repeated fuzzing

campaigns, each of which was performed for 24 hours. We used the

Mann-Whitney U-Test [7] with α = 0.05 to determine the signifi-
cance of each experiment. When we report the number of unique

crashes, we follow AFL’s definition: if two crashes achieve the same

branch coverage, we count them as one.

Measuring Throughput. In RQ1, RQ3, and RQ4, the test case gen-

eration throughput—the number of test cases the fuzzer produced

per second—is used as a proxy to measure the cost of the analysis

each fuzzer performs. When a fuzzer performs a time consuming

operation (in the case of Ankou, the dynamic PCA), it is at the

expense of the test case that could have been generated and run in

the same amount of time. Thus, the lower the throughput is, the

higher the cost of the analysis the fuzzer is performing.

Fuzzers to Compare. Since Ankou is a source-based fuzzer it can-

not be fairly compared to binary-based fuzzers such as Eclipser [15]

or RedQueen [9]. Recent source-based fuzzers such as Steelix [33]

and CollAFL [22] were not made available for comparison. Lib-

Fuzzer [5] requires a custom library caller to be made to run experi-

ments. Hence, we compare Ankou against AFL 2.52b [58], the latest

version at the time of writing, and Angora [14]. When we run AFL,

we used the “-d” option, which essentially enables AFLFast [2, 11].

Our Benchmark. To create our benchmark, we collected all the

programs, but with the latest versions, used by CollAFL [22]. This

benchmark includes a total of 24 different program packages, con-

stituting more than 5 MLoC (see Table 1). When a program package

contains more than one executable, we consider all of them as a sep-

arate subject. For example, libtasn1 is a library, which has three

distinct wrapper program executables in its source distribution. In

this case, we regard each executable as a distinct subject2. As a re-

sult, we obtained 150 different subjects from the 24 packages. Since

the authors of CollAFL have not opened their benchmark to the

public, we obtained initial seeds by gathering test cases provided

by each package, and we did not perform any additional processing.

We make our benchmark public along with the source code.

Hours of Experiments. We ran Ankou and AFL on each subject

of our benchmark suite for 24 hours, and repeated this experiment

for 6 times. We did the same for Angora, but only on the subjects it

was successfully compiled for (see §6.6). To answer RQ1 and RQ3,

we selected 24 subjects from the benchmark by randomly choosing

one executable per package. We then ran 24-hour fuzzing for each

of the 24 subjects of the selected subset 6 times. In total, all our

experiments constitute 2,682 CPU days.

6.2 RQ1: Impact of Dimensionality Reduction

Does dynamic PCA really help improve the efficiency of distance-

based fitness function? To answer this question, we run Ankou in

two modes: (mode 1) Ankou with the distance computed using the

2The term subject is widely used in practice by LibFuzzer [5].

1030

1

10

100

1000

1

3

9

27

Subjects

C
ra

sh
 r

at
io

(in
 lo

g)

T
hroughput ratio

(in log)

Crashes
Throughput

Figure 3: Comparison between distance-based fitness func-

tion with and without dynamic PCA in terms of the number

of crashes found and test case generation throughput.

dynamic PCA, and (mode 2) Ankouwith distance-based fitness func-

tion but without dynamic PCA. Meaning, the distance is computed

using Definition 3.2, without any dimensionality reduction.

Figure 3 illustrates our experimental results after 24 hours of

fuzzing on each of the 24 selected subjects. The line with circles

shows the ratio between the number of crashes found with mode 1

and 2. The line with squares shows the ratio between the test

generation throughput of Ankou with mode 1 and 2. The first five

crash points (circles) have the ratio of one as we found no crash in

both cases. The last six points, with a ratio of 1,000, are the cases

where Ankou in mode 1 found crashes while mode 2 did not. In

all cases, the crash ratio was higher than one, meaning that using

dynamic PCA always produces better results than using Defintion

3.2. Ankou found 11.8× more unique crashes and generated 13.2×

more test cases with dynamic PCA than without it.

The “ 1 < 3 U value” and the “ 2 < 4 U value” columns of Table 1

describe the result of the Mann-Whitney U Test on the experiment.

A value written in bold and with a grey background means the

experiment was successful. If the value is close to 1.0, it means the

hypothesis is validated, e.g. “ 1 < 3 ”. On the other hand, if the value

is close 0.0, it means the opposite is validated, e.g. “ 1 > 3 ”. For those

subjects that show statistical significance, dynamic PCA gave con-

siderably better results in terms of both bug finding and throughput.

These results confirm the necessity of our dynamic PCA to enable

the practical usage of the distance-based fitness function.

6.3 RQ2: Effectiveness of Dynamic PCA

Although dynamic PCA allows us to efficiently generate test cases,

it comes at a price. Since dynamic PCA is an approximation process,

it may suffer from a loss of information. If so, how much would be

the loss? In other words, do the identified basis from dynamic PCA

successfully maximize the variances of branch-hit-count states?

To answer the question, we measured the effectiveness of dy-

namic PCA on all the fuzzing campaigns against the 150 subjects

in our benchmark. The effectiveness is quantified by the variances,

i.e., eigenvalues, appeared in the resulting covariance matrix Σ′.

By computing the portion of the variances of the selected axes in

Σ
′, we can quantify how much information is lost by running the

dynamic PCA (or standard PCA) process. For instance, if we look

back at the example in §2.2, the effectiveness of PCA was about

89% (= 8.18/(8.18 + 0.981)). The closer this number is to 100%, the

less loss of information in the PCA computation will be.

Figure 4 is the histogram showing the effectiveness of dynamic

PCA for all the 150 subjects. For 80% of the subjects, the effectiveness

0

5

10

15

20

25

50 60 70 80 90

Effectivess of Dynamic PCA (%)

F
re

qu
en

cy

Figure 4: The effectiveness of dynamic PCA represented by

the percentage of preserved information on 150 subjects.

The green dashed line represents the median effectiveness.

0.25

1.00

4.00

0.25

1.00

4.00

Subjects

C
ra

sh
 r

at
io

(in
 lo

g)

T
hroughput ratio

(in log)

Crashes
Throughput

Figure 5: Comparison between distance-based fitness and

coverage-based fitness function in terms of the number of

crashes found and test case generation throughput.

was above 78.8%, and for 90% of the subjects, the effectiveness was

above 72.7%. In other words, dynamic PCA was able to keep 80%

of the information obtained from program executions in most of

the subjects. This result indeed highlights the key contribution of

our paper: dynamic PCA can effectively reduce the dimensionality

of program state space without losing much information, which

enables the practicality of distance-based fuzzing.

6.4 RQ3: Distance- vs. Coverage-based Fitness

Recall from §3, one of the key motivations of distance-based fit-

ness function was that coverage-based fitness functions do not

provide sufficient information to fuzzers for finding bugs. To con-

firm the value of distance-based fitness function, we ran Ankou

with and without distance-based fitness function. When disabling

the distance-based fitness function for Ankou, we only used branch

coverage as its fitness criterion.

Figure 5 shows our results after 24 hours of fuzzing on the

same 24 subjects as in RQ1. Overall, distance-based fitness func-

tion found 1.5× more unique crashes, and produced more crashes

in 60% of the subjects, excluding the 5 subjects where no crashes

were found. At best, the distance-based fitness function found 4×

more unique crashes than without it. As the right-most columns

of Table 1 describe, for those subjects that manifest statistic sig-

nificance, distance-based fitness function gave better results for

83% of the cases (5 out of 6). However, for the other subjects that

were not found to be statistically significant, the distance-based fit-

ness function was usually still an improvement over the traditional

coverage-based fitness function in terms of the number of crashes

found. Otherwise, the difference was negligible. Since the expected

loss is slim while the potential gain is large, we should benefit from

choosing the distance-based fitness function a priori.

1031

Table 1: Detailed experimental results for RQ1 and RQ3. We show the Mann-Whitney U test results along with the detailed

numbers for every experiment we performed. The shared areas indicate statistically significant results.

No PCA vs. Dynamic PCA (RQ1, §6.2) Coverage vs. Distance-based Fitness (RQ3, §6.4)

Package Name Version KLoC
1 Ankou
Crashes

2 Ankou
Throughput

3 No PCA
Crashes

1 < 3
U Value

4 No PCA
Throughput

2 < 4
U Value

5 Cov-based
Crashes

1 < 5
U Value

6 Cov-based
Throughput

2 < 6
U Value

binutils 2.32 1687 0.167 102 0 (-Inf) 0.42 23.9 (÷4.27) 0.00 0.167 0.50 508 (+397%) 1.00
bison 3.3 82.4 497 20 13 (÷38.22) 0.00 1.01 (÷19.86) 0.00 232 (-53%) 0.00 20.8 (+3%) 0.33
catdoc 0.95 3.8 28.7 56.7 8.67 (÷3.31) 0.00 2.48 (÷22.90) 0.00 23.5 (-18%) 0.47 36.9 (-34%) 0.11
cflow 1.6 37.8 470 78.9 83.3 (÷5.64) 0.00 4.72 (÷16.70) 0.00 262 (-44%) 0.00 160 (+102%) 0.69
clamav 0.101.2 840 211 89.3 37 (÷5.70) 0.00 2.55 (÷35.07) 0.00 91 (-56%) 0.00 76.6 (-14%) 0.25
GraphicMagick 1.3.31 252 13.7 66.6 0 (-Inf) 0.08 4.44 (÷14.99) 0.00 3.8 (-72%) 0.35 94.1 (+41%) 1.00
jasper 2.0.14 30.8 324 294 36.7 (÷8.84) 0.00 11.5 (÷25.64) 0.00 142 (-56%) 0.00 189 (-35%) 0.25
libav 12.3 586 23.7 14.8 5.67 (÷4.18) 0.00 0.872 (÷16.94) 0.00 35.4 (+49%) 0.80 12.7 (-14%) 0.40
dwarf b4f198 93.8 15.2 119 9.67 (÷1.57) 0.00 4 (÷29.69) 0.00 17.5 (+15%) 0.92 102 (-14%) 0.44
libexiv2 0.27.1 72.9 57.3 49.1 36 (÷1.59) 0.50 4.02 (÷12.22) 0.00 84.4 (+47%) 0.67 62.6 (+27%) 0.90
libgxps 0.3.1 8.8 2.33 48.6 2.33 0.50 19.4 (÷2.51) 0.00 3 (+28%) 0.83 31.1 (-36%) 0.00
liblouis 3.9.0 36.2 488 30.9 1 (÷487.67) 0.00 5.57 (÷5.54) 0.00 124 (-74%) 0.00 147 (+375%) 1.00
libming 0.4.8 81.2 337 56.2 1.33 (÷252.88) 0.38 9.63 (÷5.83) 0.00 445 (+31%) 0.58 390 (+594%) 1.00
mpg123 1.25.10 41.1 0 18 0 0.50 0.894 (÷20.14) 0.00 0 0.50 42.7 (+137%) 1.00
libncurses 6.1 112 209 33 34 (÷6.14) 0.38 2.5 (÷13.16) 0.00 359 (+71%) 0.56 99.2 (+200%) 1.00
libraw 0.19.2 51.3 17.2 58.8 0 (-Inf) 0.33 9.25 (÷6.36) 0.00 22 (+28%) 0.50 183 (+210%) 1.00
libsass 3.5.2 24.7 5 95.5 0 (-Inf) 0.33 3.63 (÷26.30) 0.00 3 (-40%) 0.75 168 (+75%) 1.00
libtasn1 4.13 30.3 0 78.4 0 0.50 3.37 (÷23.25) 0.00 0 0.50 204 (+159%) 1.00
libtiff 4.0.10 67.6 0.167 117 0 (-Inf) 0.42 10.4 (÷11.22) 0.00 0.167 0.50 259 (+121%) 1.00
libtorrent 1.2.1 119 0 96.7 0 0.50 3.58 (÷27.04) 0.00 0 0.50 134 (+38%) 0.89
nasm 2.14.03rc2 94.0 46.3 30.4 0 (-Inf) 0.00 3 (÷10.14) 0.00 45.8 (-1%) 0.61 185 (+507%) 1.00
pspp 1.2.0 257 312 19 0.5 (÷623.33) 0.29 1.18 (÷16.17) 0.00 196 (-37%) 0.50 46.5 (+144%) 1.00
tcpdump 4.9.2 77.3 0 66.3 0 0.50 6.27 (÷10.57) 0.00 0 0.50 189 (+184%) 1.00
vim 8.1.1332 347 123 10.2 0.667 (÷185.00) 0.00 1.51 (÷6.74) 0.00 62.7 (-49%) 0.33 13 (+27%) 0.53

Total 5037 3180 1649 269 (÷11.82) 139.7 (÷11.80) 2152 (-32%) 3352 (+103%)

0.1

1.0

10.0

Subjects

T
hr

ou
gh

pu
t r

at
io

(in
 lo

g)

Figure 6: Comparison of test case generation throughput be-

tween Ankou and AFL.

On the other hand, Ankou using distance-based fitness function

had a test case generation throughput 51% lower because of the

time spent on computing its fitness function. Thus, even if the

distance-based fitness incurs a significantly slower throughput, it

allows Ankou to find more unique crashes.

Remarkably, the difference in branch coverage was insignificant:

it was under 1.5% on average. This result coincides with our obser-

vation: software bugs do not manifest when we achieve certain code

coverage, but when we exercise a specific execution path. Therefore,

we conclude that distance-based fitness function benefits grey-box

fuzzing in terms of finding software bugs in an effective manner.

6.5 RQ4: Distance-based Fuzzing Cost

In this subsection, we evaluate the practicality of distance-based

fuzzing with the following two questions: (1) Is the dynamic PCA

necessary? How slow would it be if we were to use the standard

PCA instead?; and (2) How much performance overhead can we

observe by enabling distance-based fuzzing assisted by dynamic

PCA instead of a coverage-based approach?

The answer to the first question is indeed simple: our initial

fuzzer prototype with the standard PCA was not usable as it spends

most of its time on computing the PCA. On our machine, it took

about an hour to compute the PCA for 5,000 seed files. Given that

fuzzers typically run thousands of test cases per second, it would

not be possible to use the standard PCA in practice.

To answer the second question, we compared the test case gen-

eration speed of both Ankou and AFL. We chose AFL because it

is a highly optimized fuzzer in terms of its fuzzing speed [59]. Fig-

ure 6 shows the test case generation throughput, which is a good

measure for the cost of additional operations, as discussed in §6.1.

We observed that Ankou was 35.0% slower than AFL on average,

with 89% of the experiments being significant. However, this does

not mean that Ankou is a worse fuzzer than AFL. Although Ankou

is slow in generating test cases, it produces more meaningful ones,

and thus, finds twice more bugs than AFL as we will see in §6.6.

Unexpectedly, Ankou showed a better throughput than AFL on

13% of the subjects. We thought this could be caused by Ankou

achieving lower code coverage, making executions faster. However,

the correlation between the coverage and the throughput ratios was

only -0.6%. We believe Ankou found new regions of the programs

that quickly terminate, while AFL did not. Overall, distance-based

fuzzing significantly decreases the throughput, but it is worthwhile

to perform more informed, hence more effective, seed pool updates.

6.6 RQ5: Comparison against Other Fuzzers

Although dynamic PCA is costly, it can enable higher software

bug finding. To understand the practical impact of distance-based

fuzzing, we answer the following two questions: (1) how effective

Ankou is in terms of the number of unique crashes found? (2) how

fast can Ankou find a crash?

6.6.1 Number of Crashes. We ran Ankou, AFL, and Angora on

each subject. We then measured how many crashes were found for

each subject along with the achieved branch coverage.

1032

0.01

0.1

1

10

100

Subjects

C
ra

sh
 /

C
ov

er
ag

e
ra

tio
(in

 lo
g)

Crashes
Coverage

(a) Ankou vs. AFL.

1

10

100

Subjects

C
ra

sh
 /

C
ov

er
ag

e
ra

tio
(in

 lo
g)

Crashes
Coverage

(b) Ankou vs. Angora.

Figure 7: Comparison between Ankou and other fuzzers in

terms of the number of crashes found and branch coverage.

Figure 7a presents the result against AFL. In total, Ankou found

3K more unique crashes than AFL, which is 1.94× more on average.

Ankou found more crashes on 75% of the subjects, on which 66%

of the experiments where significant. On the other hand, the two

fuzzers achieved more or less the same branch coverage: on average

Ankou covered 1.27% more branches than AFL. Note that Ankou

was able to find twice more crashes even though there was no big

difference in terms of code coverage. This result indeed aligns with

our key intuition: software bugs often manifest when we exercise

a particular execution path, but not when we reach a node.

Figure 7b presents the result against Angora. Unlike AFL and

Ankou, Angora requires DFSan [1] instrumentation to perform

taint tracking, which makes it difficult to compile our benchmark.

As a result, we were only able to compile about half of the packages.

Among these, Angora found crashes in 22 subjects. Here, we report

results only on those. On average, Ankou found 8.0× more crashes

than Angora. Ankou prevailed on most subjects, and half of them

showed strong statistical significance. These results confirm using

the distance-based fitness function leads to better crash finding.

6.6.2 Time-To-Exposure of Crashes. We also measured how much

time each fuzzer spends to find the first crash. On the subjects

where both AFL and Ankou found crashes, Ankou was 27% faster

in finding the first crash. Similarly, on the subjects where both

Angora and Ankou found crashes, Ankou found them 68% earlier.

This result also confirms the effectiveness of Ankou against state-

of-the-art fuzzers in terms of its bug-finding ability.

6.7 Examination on Bugs Found

In §6.6 (RQ5), we reported the average number of crashes found for

six repeated fuzzing experiments. During the whole experiment,

Ankou found 93,754 crashes on the 150 subjects for 21,600 hours

(= 24 × 6 × 150). Although this number has its own value, we

analyzed further to understand how many unique bugs each fuzzer

Ankou AFL

473 279 253

(a) Ankou vs. AFL.

Ankou Angora

79 20 4

(b) Ankou vs. Angora.

Figure 8: Comparison of bugs found.

Table 2: Comparison between fuzzers by the number of

unique bugs when triaged with stack hash.

of Bugs Found # of Bugs Found

Package Name Ankou AFL Ankou† Angora

binutils 11 36 11 4
bison 58 71 36 2
catdoc 0 15 0 0
cflow 21 18 13 1
clamav 0 0 0 0
dwarf 2 2 2 2
GraphicsMagick 22 27 21 11
jasper 42 37 0 0
libav 1 7 0 0
libexiv2 82 59 16 4
libgxps 5 5 0 0
liblouis 18 11 0 0
libming 84 60 0 0
libncurses 48 53 0 0
libraw 2 4 0 0
libsass 155 12 0 0
libtasn1 0 0 0 0
libtiff 3 2 0 0
libtorrent 0 0 0 0
mpg123 0 0 0 0
nasm 28 12 0 0
pspp 168 99 0 0
tcpdump 0 0 0 0
vim 2 2 0 0

Total 752 532 99 24

† As mentioned in §6.6.1, we were not able to compile Angora on all the packages. For fair com-
parison, we report bugs found by Ankou only on the subjects that Angora was able to run on.

found. This is important, as noted by Klees et al. [28], because

multiple unique crashes may be due to the same bug.

Unfortunately, manual inspection was not an option as there

were simply too many crashes. We originally tried to run ASan [49]

to triage the crashes, but it failed to detect the root cause of many

crashes. Therefore, we decided to use safe stack hash [12] instead,

which works the same as the classic stack hash [41] with one excep-

tion: when there is an unreachable return address in the stack-trace,

it stops traversing the stack. In our experiment, we computed the

safe stack hash of the top five stack-trace entries of each crash.

Although there are advanced crash triaging algorithms [17, 56], it

is beyond the scope of this paper to adopt such techniques.

Figure 8 and Table 2 represents the number of unique bugs found

after running the safe stack hash on all the crashes found. Overall,

Ankou found 1.4× and 4.1×more unique bugs than AFL and Angora,

respectively. There were overlaps, but there were a higher number

of bugs that only Ankou was able to find. All these results confirm

the practicality of Ankou in terms of bug finding.

7 DISCUSSION

First, we define the execution distance (Definition 3.2) as the Eu-

clidean distance in the branch-hit-count space Ωp . Although we

1033

believe the choice of Euclidean distance is intuitive, one may con-

sider a different distance metric such as Manhattan distance. Fur-

thermore, the fitness function is defined as the minimum distance

from a test case execution to the seed pool executions. While this

is intuitively the amount of discovery made by this new test case,

there may be a more optimal way of setting the fitness function.

We see improving this area as promising future work.

In our experiment, the dynamic PCA was always able to reduce

the state space with an acceptable information loss. However, there

is no guarantee that it will be the case for all programs. We leave it

as future work to prove a theoretical bound of its information loss.

With the adaptive seed pool update, the fitness threshold θfit is
adaptively set to the minimum execution distance between any two

seeds. However, there may be opportunities to choose a more ap-

propriate threshold by not limiting ourselves to the contents of the

seed pool. For example, refused test cases, even though they were

not included in the pool, may be able to provide useful information

to help this choice. Designing an optimal strategy for updating the

seed pool is beyond the scope of this paper.

8 RELATEDWORK

Fuzzing. Fuzzing has shown remarkable success in various ar-

eas [9, 11, 12, 23, 25, 26, 32, 33, 35, 37, 39, 43–47, 51, 57]. In the

context of fuzzing, usage of the evolutionary algorithm was first

introduced by Sidewinder in 2006 [19] and popularized by AFL and

LibFuzzer [5, 58]. Ankou is also a grey-box fuzzer built upon the

evolutionary framework. However, its uniqueness is its leverage

of an informative fitness function that we call distance-based fit-

ness, which deals with the considerably high dimensionality of the

program state space, compared to the existing fitness functions.

Improving Fitness Function. There have been several research

papers on improving the information given to, and the objective of

the fitness function. CollAFL [22] improves information quality by

avoiding hash collisions, thus indirectly enhances the fuzzer fitness

function. Although it gains by avoiding imprecision, its fitness is

still based on branch-hit-count states, so it suffers from the local

optimum problem. PerfFuzz [31] leverages multi-dimensional feed-

back considering both code coverage and execution counts to tackle

the local optimum problem. Eclipser [15] uses branch distances [40]

to guide their search towards solving linear and monotonic con-

straints. Angora [14] augments its fitness function by considering

the calling context when calculating branch coverage. However,

none of these approaches handles the high-dimensionality problem

of employing an informative fitness function. Our distance-based

fitness function is complementary to them.

Distance between Test Cases. Feldt et al. [20] proposed a dis-

tance quantifying the difference between test cases. Unlike execu-

tion distance (see Definition 3.2), which is based on the execution of

a program, this one is based on the input contents alone. It could still

have been used in complement to δB if it was not for its high com-
putational cost. Pinilla-López et al. [36] compute PCA on the most

recently discovered seeds to bias the seed scheduling. Although

their work shares the same intuition in conceptualizing the state

space, our approach differs both in goal as well as in the underlying

technique. Our goal is guiding a fuzzing campaign using a fitness

function, while theirs is modifying the seed scheduling algorithm.

Moreover, scheduling algorithms can only be informed by seeds

already chosen by their fitness function. However, our approach

recognizes information from all the generated test cases.

Seed Scheduling. Starting from Woo et al. [55] seed schedul-

ing has been a popular topic for improving fuzzers. AFLGo [10]

and Hawekeye [13] combine fuzzing with information extracted

from static analysis to direct fuzzers. AFLFast [11] suggests power

scheduling, which assigns more energy to seeds that achieve higher

code coverage. Cerebro [34] enhances seed scheduling based on a

variety of objectives such as code complexity and code coverage

of seeds. Such improvement has the benefit of focusing on a tiny

subset of test cases already selected by the user or the fitness func-

tion, i.e., the seed pool. Unfortunately, we cannot directly apply

these techniques to a fitness function due to its harsh performance

requirement: it needs to run for every single test case.

Advanced PCA. Roweis [48] suggests an expectation maximiza-

tion algorithm for computing PCA. It does not need the covariance

matrix, and only calculates the desired number of principal com-

ponents. However, this approach requires all the samples to be

given at the beginning of the algorithm, which does not meet our

needs since fuzzers generate samples throughout the fuzzing cam-

paign. On the other hand, the online PCA [42, 54] aims to compute

principal components on the fly: whenever new data is acquired,

it updates the current principal components. This solution is not

suitable for grey-box fuzzing as each of the online PCA updates

has a complexity of O(n2), where n is the number of dimensions
of the original space, i.e., the number of branches. Whereas the

time complexity of dynamic PCA is linear in n. Other approaches
such as random projection based online PCA [24] and stochastic

PCA [8, 50] have a linear complexity. This is achieved by discarding

much of the available data, unlike the dynamic PCA, which includes

most of the data by updating the covariance matrix and its basis

improvement mechanism. Furthermore, none of the approaches

above includes a discount factor, described in §4.3.

9 CONCLUSION

We designed and implemented Ankou, the first grey-box fuzzer that

operates with a high dimensionality representation of the program

state space. Ankou employs distance-based fitness function, which

provides too much information about program executions to con-

sume in practice. However, we transform the information obtained

by the fitness function with our novel dimensionality reduction

technique that we refer to as dynamic PCA. As a result, we were

able to greatly improve the current state of grey-box fuzzing in

terms of its bug finding ability. We made both our source code and

benchmark public to support open science.

ACKNOWLEDGMENTS

We thank anonymous reviewers for their constructive feedback.

This work was supported by Institute of Information & communi-

cations Technology Planning & Evaluation (IITP) grant funded by

the Korea government (MSIT) (No.2019-0-01697, Development of

Automated Vulnerability Discovery Technologies for Blockchain

Platform Security).

1034

REFERENCES
[1] [n.d.]. Data Flow Sanitizer. http://clang.llvm.org/docs/DataFlowSanitizer.html.
[2] [n.d.]. Fidgety AFL. https://groups.google.com/forum/#!topic/afl-users/

fOPeb62FZUg.
[3] [n.d.]. The Go Programming Language. https://golang.org.
[4] [n.d.]. Gonum Numeric Library. https://www.gonum.org.
[5] [n.d.]. LibFuzzer. http://llvm.org/docs/LibFuzzer.html.
[6] Mike Aizatsky, Kostya Serebryany, Oliver Chang, Abhishek Arya, and Meredith

Whittaker. 2016. Announcing OSS-Fuzz: Continuous Fuzzing for Open Source
Software. Google Testing Blog.

[7] Andrea Arcuri and Lionel Briand. 2011. A practical guide for using statistical
tests to assess randomized algorithms in software engineering. 1–10.

[8] Raman Arora, Andy Cotter, and Nati Srebro. 2013. Stochastic optimization of
PCA with capped MSG. In Advances in Neural Information Processing Systems.
1815–1823.

[9] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and
Thorsten Holz. 2019. REDQUEEN: Fuzzing with Input-to-State Correspondence.
In Proceedings of the Network and Distributed System Security Symposium.

[10] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoud-
hury. 2017. Directed Greybox Fuzzing. In Proceedings of the ACM Conference on
Computer and Communications Security. 2329–2344.

[11] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
based Greybox Fuzzing as Markov Chain. In Proceedings of the ACM Conference
on Computer and Communications Security. 1032–1043.

[12] Sang Kil Cha, Maverick Woo, and David Brumley. 2015. Program-Adaptive
Mutational Fuzzing. In Proceedings of the IEEE Symposium on Security and Privacy.
725–741.

[13] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie, Xiuheng Wu,
and Yang Liu. 2018. Hawkeye: Towards a Desired Directed Grey-box Fuzzer. In
Proceedings of the ACM Conference on Computer and Communications Security.
2095–2108.

[14] Peng Chen and Hao Chen. 2018. Angora: Efficient Fuzzing by Principled Search.
In Proceedings of the IEEE Symposium on Security and Privacy. 855–869.

[15] Jaeseung Choi, Joonun Jang, Choongwoo Han, and Sang Kil Cha. 2019. Grey-box
Concolic Testing on Binary Code. In Proceedings of the International Conference
on Software Engineering. 736–747.

[16] Paolo Ciaccia, Marco Patella, and Pavel Zezula. 1997. M-Tree: An Efficient Access
Method for Similarity Search in Metric Spaces. In Proceedings of the International
Conference on Very Large Data Bases. 426–435.

[17] Weidong Cui, Marcus Peinado, Sang Kil Cha, Yanick Fratantonio, and Vasileios P.
Kemerlis. 2016. RETracer: Triaging Crashes by Reverse Execution from Par-
tial Memory Dumps. In Proceedings of the International Conference on Software
Engineering. 820–831.

[18] Al Danial. [n.d.]. Count Lines of Code: Coverage Tool. http://cloc.sourceforge.
net/.

[19] Shawn Embleton, Sherri Sparks, and Ryan Cunningham. 2006. “Sidewinder”: An
Evolutionary Guidance System for Malicious Input Crafting. In Proceedings of
the Black Hat USA.

[20] Robert Feldt, Simon Poulding, David Clark, and Shin Yoo. 2016. Test Set Diame-
ter: Quantifying the Diversity of Sets of Test Cases. In Proceedings of the IEEE
International Conference on Software Testing, Verification and Validation. 223–233.

[21] John GF Francis. 1961. The QR transformation a unitary analogue to the LR
transformation. Comput. J. 4, 3 (1961), 265–271.

[22] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu Pei, and
Zuoning Chen. 2018. CollAFL: Path Sensitive Fuzzing. In Proceedings of the IEEE
Symposium on Security and Privacy. 660–677.

[23] Patrice Godefroid, Hila Peleg, and Rishabh Singh. 2017. Learn&Fuzz: Machine
Learning for Input Fuzzing. In Proceedings of the International Conference on
Automated Software Engineering. 50–59.

[24] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. 2011. Finding Structure
with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix
Decompositions. SIAM review 53, 2 (2011), 217–288.

[25] HyungSeok Han and Sang Kil Cha. 2017. IMF: Inferred Model-based Fuzzer. In
Proceedings of the ACM Conference on Computer and Communications Security.
2345–2358.

[26] HyungSeok Han, DongHyeon Oh, and Sang Kil Cha. 2019. CodeAlchemist:
Semantics-Aware Code Generation to Find Vulnerabilities in JavaScript Engines.
In Proceedings of the Network and Distributed System Security Symposium.

[27] Ian T. Jolliffe. 2011. Principal Component Analysis. Springer.
[28] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.

Evaluating fuzz testing. In Proceedings of the ACM Conference on Computer and
Communications Security. 2123–2138.

[29] lafintel. 2016. Circumventing Fuzzing Roadblocks with Compiler Trans-
formations. https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-
roadblocks-with-compiler-transformations/.

[30] Joel Lehman and Kenneth O Stanley. 2008. Exploiting Open-Endedness to Solve
Problems through the Search for Novelty. In Proceedings of the International
Conference on Artificial Life. 329–336.

[31] Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. 2018. PerfFuzz:
Automatically Generating Pathological Inputs. In Proceedings of the International
Symposium on Software Testing and Analysis. 254–265.

[32] Caroline Lemieux and Koushik Sen. 2018. FairFuzz: A Targeted Mutation Strategy
for Increasing Greybox Fuzz Testing Coverage. In Proceedings of the International
Conference on Automated Software Engineering. 475–485.

[33] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu,
and Alwen Tiu. 2017. Steelix: Program-state Based Binary Fuzzing. In Proceedings
of the International Symposium on Foundations of Software Engineering. 627–637.

[34] Yuekang Li, Yinxing Xue, Hongxu Chen, Xiuheng Wu, Cen Zhang, Xiaofei Xie,
Haijun Wang, and Yang Liu. 2019. Cerebro: Context-Aware Adaptive Fuzzing for
Effective Vulnerability Detection. In Proceedings of the International Symposium
on Foundations of Software Engineering. 533–544.

[35] Daniel Liew, Cristian Cadar, Alastair F Donaldson, and J Ryan Stinnett. 2019. Just
Fuzz It: Solving Floating-Point Constraints using Coverage-Guided Fuzzing. In
Proceedings of the International Symposium on Foundations of Software Engineering.
521–532.

[36] Jorge Pinilla López. 2019. Improving fuzzing performance using hardware-
accelerated hashing and PCA guidance. https://cs.anu.edu.au/courses/csprojects/
19S1/reports/u6759601_report.pdf.

[37] Valentin J. M. Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J. Schwartz, and Maverick Woo. 2019. The Art, Science, and
Engineering of Fuzzing: A Survey. IEEE Transactions on Software Engineering
(2019). https://doi.org/10.1109/TSE.2019.2946563

[38] Valentin J. M. Manès, Soomin Kim, and Sang Kil Cha. 2020. Ankou. https:
//github.com/SoftSec-KAIST/Ankou.

[39] Björn Mathis, Rahul Gopinath, Michaël Mera, Alexander Kampmann, Matthias
Höschele, and Andreas Zeller. 2019. Parser-directed Fuzzing. In Proceedings of the
ACM Conference on Programming Language Design and Implementation. 548–560.

[40] Phil McMinn. 2011. Search-Based Software Testing: Past, Present and Future. In
Proceedings of the IEEE International Conference on Software Testing, Verification
and Validation Workshops. 153–163.

[41] DavidMolnar, Xue Cong Li, and David A.Wagner. 2009. Dynamic Test Generation
to Find Integer Bugs in x86 Binary Linux Programs. In Proceedings of the USENIX
Security Symposium. 67–82.

[42] Jiazhong Nie, Wojciech Kotłowski, and Manfred K. Warmuth. 2013. Online
PCA with Optimal Regrets. In Proceedings of the International Conference on
Algorithmic Learning Theory. 98–112.

[43] Shankara Pailoor, Andrew Aday, and Suman Jana. 2018. MoonShine: Optimizing
OS Fuzzer Seed Selection with Trace Distillation. In Proceedings of the USENIX
Security Symposium. 729–743.

[44] Jibesh Patra and Michael Pradel. 2016. Learning to Fuzz: Application-Independent
Fuzz Testing with Probabilistic, Generative Models of Input Data. Technical Report
TUD-CS-2016-14664. TU Darmstadt.

[45] Van-Thuan Pham, Marcel Böhme, Andrew E. Santosa, Alexandru R. Căciulescu,
and Abhik Roychoudhury. 2019. Smart Greybox Fuzzing. IEEE Transactions on
Software Engineering (2019). https://doi.org/10.1109/TSE.2019.2941681

[46] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,
and Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing. In
Proceedings of the Network and Distributed System Security Symposium.

[47] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote, David
Warren, Gustavo Grieco, and David Brumley. 2014. Optimizing Seed Selection
for Fuzzing. In Proceedings of the USENIX Security Symposium. 861–875.

[48] Sam Roweis. 1997. EM Algorithms for PCA and SPCA. In Proceedings of the 1997
Conference on Advances in Neural Information Processing Systems. 626 – 632.

[49] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In Proceedings
of the USENIX Annual Technical Conference. 309–318.

[50] Ohad Shamir. 2015. A stochastic PCA and SVD algorithm with an exponential
convergence rate. In International Conference on Machine Learning. 144–152.

[51] Heyuan Shi, Runzhe Wang, Ying Fu, Mingzhe Wang, Xiaohai Shi, Xun Jiao, Houb-
ing Song, Yu Jiang, and Jiaguang Sun. 2019. Industry Practice of Coverage-Guided
Enterprise Linux Kernel Fuzzing. In Proceedings of the International Symposium
on Foundations of Software Engineering. 986–995.

[52] Gilbert Strang. 2003. Introduction to Linear Algebra (3 ed.). Wellesley-Cambridge
Press.

[53] Charles F Van Loan and Gene H Golub. 1983. Matrix computations. Johns Hopkins
University Press.

[54] Manfred K. Warmuth and Dima Kuzmin. 2008. Randomized Online PCA Algo-
rithms with Regret Bounds that are Logarithmic in the Dimension. Journal of
Machine Learning Research 9 (2008), 2287–2320.

[55] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David Brumley. 2013.
Scheduling Black-box Mutational Fuzzing. In Proceedings of the ACM Conference
on Computer and Communications Security. 511–522.

[56] Jun Xu, Dongliang Mu, Ping Chen, Xinyu Xing, Pei Wang, and Peng Liu. 2016.
CREDAL: Towards Locating a Memory Corruption Vulnerability with Your Core
Dump. In Proceedings of the ACM Conference on Computer and Communications
Security. 529–540.

1035

[57] Wei You, Xuwei Liu, Shiqing Ma, David Perry, Xiangyu Zhang, and Bin Liang.
2019. SLF: Fuzzing Without Valid Seed Inputs. In Proceedings of the International
Conference on Software Engineering. 712–723.

[58] Michal Zalewski. [n.d.]. American Fuzzy Lop. http://lcamtuf.coredump.cx/afl/.
[59] Michal Zalewski. [n.d.]. Technical “whitepaper” for afl-fuzz. http://lcamtuf.

coredump.cx/afl/technical_details.txt.

1036

