Ankou: Guiding Grey-box Fuzzing
towards Combinatorial Difference

Valentin Maneés', Soomin Kim?, Sang Kil Cha?
1CSRC, KAIST 2KAIST

The Success of Grey-box Fuzzing

“OSS-Fuzz has found over 20,000 bugs
in 300 open source projects.”

&

Why one more ?

Grey-box, How?

Fithess Function:

if(“interesting”):
Add to seed pool

Test Case *

L
L J
[]
[]

Fuzzer

Seed Pool

(Test Case A)
(Test Case B)
(Test Case C |

Test Case Program

Which Feedback?

Coverage has proved a
good tradeoff between cost
and benefits.

- BFF - LibFuzzer

Ankou: Opportunity to
improve?

- Vuzzer
- Angora

Coverage-Based Fuzzing

int combinedBranches(char *data) { “-__-_
if (data[@] == 'A') bits |= 1;
if (data[1] == 'B') bits |= 2; [Branch1 X - X
if (data[2] == 'C') bits |= 4; Branch 2 X X X
if (bits == 7) Branch 3 X
printf("BINGO\n");
return 0;
}
[[\
Fuzzer Fitness Function:
1

Informative Fithness with Combination

Ankou goal: developing a fitness function taking into account combinations.
1. Quantify the difference between program executions.
2. Make fitness computation fast.

3. Make the fitness adaptive to the program.

SECURITY.. ———

Point Representation

3
X 2
L
o
c
©
S
m 1
0
0 1 2 3 4 5 6

Branch 1

SECURITY..

Distance between Executions

Euclidean Distance

N

Branch 2

—_—
«

0 1 2 3 4 5 6

Branch 1

Distance between Executions

Detects Combinatorial Difference!

2 ©

10 ! ®

Branch 2

0 1 2 3 4 5 6

Branch 1

Distance-based Fithess Function

6 g o Seed Pool A

4 o o

- J

1 . ? Point-to-Pool ?

0 1 2 3 4 5 6 7 8

Branch 1

Branch 2

Distance-based Fithess Function

6 g o Seed Pool A

g / © » O

< | J

3 & 1 —1
|

Branch 2

1 o & | Point-to-Pool = Minimum Point-to-Point

0 1 2 3 4 5 6 7 8

Branch 1

Cost Sensitivity

35

30 J(_‘
.)
~ Seed Pool
i - 20 ® P < | > @
o
% 15 ° ° — .
= . y

I
10 o A N

Problem: Slow Computation

Euclidean Distance = O(#branch)

Cost Reduction

Euclidean Distance = O(#branch)

Dimensionality Reduction See paper for details on
the Dynamic PCA.

Euclidean Distance = O(#reprentative branch”)

Ankou Adaptive Fitness Function

Ankou fitness function:

if{new branch):
if(Point-to-Pool distance ??):
Add test to seed pool

SOFTWIRE

SECURITY... P ——

Ankou Adaptive Fitness Function

Ankou fitness function:

if{new branch):

if(Point-to-Pool distance > 6f;;):
Add test to seed pool
¢ < Minimum inter-seed distance

O

Branch 2
O =~ N W A O

0 1 2 3 4 5 6 7

Branch 1

SOFTWIRE

SECURITY...

Benchmark

« Use 24 packages used by CollAFL".
 All experiments are 6x24 hours runs.

* In total: our experiments constitute 2,682 CPU days.

1S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “CollAFL: Path sensitive fuzzing,”

in Proceedings of the IEEE Symposium on Security and Privacy, 2018, pp. 660-677.

Q: Is the New Fitness Function
Effective?

Ankou with and without Distance-based

Distance-based finds 44% more crashes.

4.00 | @ # Crashes 400
[e) 0 Throughput 3
T S A =&
= 2100 | AL 1.00 3'Q
c = —
A C S €
E - ~ —+
O 025 025 @
Ul =)

Subijects

Q: How does Ankou compare
to other grey-box fuzzers?

Ankou vs. AFL

Ankou finds 41% more unique crashes.

o 100
= e # Crashes

©

o 4o | @ Coverage jj- Ankou AFL
&~

EJ _8.’ 1 ___—ane ¥

3& -

= 0.1 ff

wn

©

O 0.01

Subjects

Ankou vs. AFL: Speed

Ankou is 35% slower than AFL.

(in log)

0.1

Throughput ratio

Subjects

Conclusion

1. Coverage-based fuzzers ignore combinations of branches.

2. Ankou distance-based fithess function quantify combinatorial

difference while being fast and adaptive to programs.

3. While being 35% slower than AFL, Ankou finds 41% more crashes.

SOFTWIRE

SECURITY, —————

Question?

