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The Success of Grey-box Fuzzing

“OSS-Fuzz has found over 20,000 bugs
in 300 open source projects.”

&

Why one more ?




Grey-box, How?

Fithess Function:

if(“interesting”):
Add to seed pool
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Which Feedback?

Coverage has proved a
good tradeoff between cost
and benefits.

- BFF - LibFuzzer

Ankou: Opportunity to
improve?

- Vuzzer
- Angora



Coverage-Based Fuzzing

int combinedBranches(char *data) { “-__-_
if (data[@] == 'A') bits |= 1;
if (data[1] == 'B') bits |= 2; [ Branch1 X - X
if (data[2] == 'C') bits |= 4; Branch 2 X X X
if (bits == 7) Branch 3 X
printf("BINGO\n");
return 0;
}
[ [ \
Fuzzer Fitness Function:
1




Informative Fithness with Combination

Ankou goal: developing a fitness function taking into account combinations.
1. Quantify the difference between program executions.
2. Make fitness computation fast.

3. Make the fitness adaptive to the program.
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Point Representation
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Distance between Executions

Euclidean Distance
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Distance between Executions

Detects Combinatorial Difference!
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Distance-based Fithess Function
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Distance-based Fithess Function
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Cost Sensitivity
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Problem: Slow Computation

Euclidean Distance = O(#branch)




Cost Reduction

Euclidean Distance = O(#branch)

Dimensionality Reduction See paper for details on
the Dynamic PCA.

Euclidean Distance = O(#reprentative branch”)




Ankou Adaptive Fitness Function

Ankou fitness function:

if{new branch):
if(Point-to-Pool distance ??):
Add test to seed pool
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Ankou Adaptive Fitness Function

Ankou fitness function:

if{new branch):

if(Point-to-Pool distance > 6f;;):
Add test to seed pool
¢ < Minimum inter-seed distance
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Benchmark

« Use 24 packages used by CollAFL".
 All experiments are 6x24 hours runs.

* In total: our experiments constitute 2,682 CPU days.

1S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “CollAFL: Path sensitive fuzzing,”

in Proceedings of the IEEE Symposium on Security and Privacy, 2018, pp. 660-677.



Q: Is the New Fitness Function
Effective?




Ankou with and without Distance-based

Distance-based finds 44% more crashes.
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Q: How does Ankou compare
to other grey-box fuzzers?




Ankou vs. AFL

Ankou finds 41% more unique crashes.
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Ankou vs. AFL: Speed

Ankou is 35% slower than AFL.
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Conclusion

1. Coverage-based fuzzers ignore combinations of branches.

2. Ankou distance-based fithess function quantify combinatorial

difference while being fast and adaptive to programs.

3. While being 35% slower than AFL, Ankou finds 41% more crashes.
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Question?




