
Ankou: Guiding Grey-box Fuzzing
towards Combinatorial Difference

Valentin Manès1, Soomin Kim2, Sang Kil Cha2
1CSRC, KAIST 2KAIST

The Success of Grey-box Fuzzing

2

“OSS-Fuzz has found over 20,000 bugs
in 300 open source projects.”

github.com/mrash/afl-cve
è Many CVEs

$$$$Why one more ?

Grey-box, How?

3

ProgramTest Case Output

Fuzzer
Seed Pool

Test Case A
Test Case B
Test Case C

Fitness Function:
if(“interesting”):

Add to seed pool
Test Case

Which Feedback?

4

Cost

No feedback

std
out

/st
der

r

Branch Coverage

Branch Hit C
ount

Taint Analys
is

- Vuzzer
- Angora
…

- AFL
- LibFuzzer
…

- zzuf
- BFF
…

Coverage has proved a
good tradeoff between cost

and benefits.

Ankou: Opportunity to
improve?

Test Case A B C D
Value “A” “BB” “AB” “ABC”
Branch 1 X X X
Branch 2 X X X
Branch 3 X

Coverage-Based Fuzzing

5

Fuzzer
Seed Pool

Test Case A
Test Case B
Test Case D

Test Case A B C
Value “A” “BB” “AB”
Branch 1 X X
Branch 2 X X
Branch 3

Test Case A B
Value “A” “BB”
Branch 1 X
Branch 2 X
Branch 3

ProgramTest Case Outputs

int combinedBranches(char *data) {
int bits = 0;
if (data[0] == 'A') bits |= 1;
if (data[1] == 'B') bits |= 2;
if (data[2] == 'C') bits |= 4;
if (bits == 7)

printf("BINGO\n");
return 0;

}

Fitness Function:
if(new branch):

Add to seed poolA more informative Fitness Function is needed!

Informative Fitness with Combination

Ankou goal: developing a fitness function taking into account combinations.

1. Quantify the difference between program executions.

2. Make fitness computation fast.

3. Make the fitness adaptive to the program.

6

Point Representation

7

0

1

2

3

0 1 2 3 4 5 6

B
ra

nc
h

2

Branch 1

8

0

1

2

3

0 1 2 3 4 5 6

B
ra

nc
h

2

Branch 1

Euclidean Distance

Distance between Executions

Distance between Executions

9

0

1

2

3

0 1 2 3 4 5 6

B
ra

nc
h

2

Branch 1

Detects Combinatorial Difference!

Distance-based Fitness Function

10

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8

B
ra

nc
h

2

Branch 1

Seed Pool

? Point-to-Pool ?

Distance-based Fitness Function

11

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8

B
ra

nc
h

2

Branch 1

Seed Pool

Point-to-Pool = Minimum Point-to-Point

Cost Sensitivity

12

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

B
ra

nc
h

2

Branch 1

Seed Pool

The fitness function is computed for every test case.

Problem: Slow Computation

13

Euclidean Distance = 𝒪(#branch)

Cost Reduction

14

Euclidean Distance = 𝒪(#branch)

Euclidean Distance = 𝒪(#“reprentative branch”)

Dimensionality Reduction See paper for details on
the Dynamic PCA.

Coverage-based fitness function:

if(new branch):
Add test to seed pool

Ankou fitness function:

if(new branch):
if(Point-to-Pool distance ??):

Add test to seed pool

Ankou Adaptive Fitness Function

15

Ankou Adaptive Fitness Function

16

0

1

2

3

4

5

0 1 2 3 4 5 6 7

B
ra

nc
h

2

Branch 1

𝜃!"#

Ankou fitness function:

if(new branch):
if(Point-to-Pool distance > 𝜃!"#):

Add test to seed pool
𝜃!"# ←Minimum inter-seed distance

Benchmark

• Use 24 packages used by CollAFL1.

• All experiments are 6x24 hours runs.

• In total: our experiments constitute 2,682 CPU days.

17
1 S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “CollAFL: Path sensitive fuzzing,”
in Proceedings of the IEEE Symposium on Security and Privacy, 2018, pp. 660–677.

Q: Is the New Fitness Function
Effective?

18

Ankou with and without Distance-based

19

0.25

1.00

4.00

0.25

1.00

4.00

Subjects

C
ra

sh
 ra

tio
(in

 lo
g)

Throughput ratio
(in log)

Crashes
Throughput

Distance-based finds 44% more crashes.

Q: How does Ankou compare
to other grey-box fuzzers?

20

Ankou vs. AFL

0.01

0.1

1

10

100

Subjects

C
ra

sh
 /

C
ov

er
ag

e
ra

tio
(in

 lo
g)

Crashes
Coverage

21

Ankou finds 41% more unique crashes.

Ankou vs. AFL: Speed

22

0.1

1.0

10.0

Subjects

Th
ro

ug
hp

ut
 ra

tio
(in

 lo
g)
Ankou is 35% slower than AFL.

Conclusion

1. Coverage-based fuzzers ignore combinations of branches.

2. Ankou distance-based fitness function quantify combinatorial

difference while being fast and adaptive to programs.

3. While being 35% slower than AFL, Ankou finds 41% more crashes.

23

Question?

24

