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A B S T R A C T

Monolithic kernel is one of the prevalent configurations out of various kernel design models.

While monolithic kernel excels in performance and management, they are unequipped for

runtime system update; and this brings the need for kernel extension. Although kernel ex-

tensions are a convenient measure for system management, it is well established that they

make the system prone to rootkit attacks and kernel exploitation as they share the single

memory space with the rest of the kernel. To address this problem, various forms of iso-

lation (e.g., making into a process), are so far proposed, yet their performance overhead is

often too high or incompatible for a general purpose kernel. In this paper, we propose Domain

Isolated Kernel (DIKernel), a new kernel architecture which securely isolates the untrusted

kernel extensions with minimal performance overhead. DIKernel leverages hardware-

based memory domain feature in ARM architecture; and prevents system manipulation attacks

originated from kernel extensions, such as rootkits and exploits caused by buggy kernel ex-

tensions. We implemented DIKernel on top of Linux 4.13 kernel with 1500 LOC. Performance

evaluation indicates that DIKernel imposes negligible overhead which is observed by cycle

level microbenchmark.

© 2018 Elsevier Ltd. All rights reserved.
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1. Introduction

Most of the current commodity operating system, like Linux,
FreeBSD, and arguably Windows are monolithic architectures
in which all the kernel is in a single address space. Even if some
had predicted the ascendance of other kernel designs, mono-
lithic kernels have passed the test of time.They are performant
and provide ease of resource management resulting from a
simpler design.

Nonetheless, as the kernel components share same execu-
tion privilege level and memory access permission, attackers
can compromise the entire system by finding the least secure
portion of kernel components. In general, the weakest chain
of the kernel components is known to be Kernel Extensions1. For
example, CVE-2017-2636, 2017 and CVE-2016-2384, 2016 dem-
onstrate an attacker getting system root privilege by exploiting
a small bug in the kernel extensions. Similarly, the mono-
lithic kernel design gives advantage to malicious kernel
extension – rootkit – for manipulating the entire operating
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1 A kernel extension is code dynamically added to the kernel after its boot. It is also known as Loadable Kernel Module (LKM) in Linux,
Device Driver (.sys) in Windows, or Dynamic Kernel Linker (KLD) in FreeBSD. In this paper, we use the term kernel extension as represen-
tative.
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system. Once a rootkit is installed as a kernel extension, system
data structures such as process control block and inode2 are
easily accessible by attacker.

Considering that kernel extension has high potential of being
compromised by attackers, we find that it is important to isolate
their execution privilege and memory access permission from
the rest of the kernel components; thus we propose Domain
Isolated Kernel which separates the kernel extensions from the
rest of kernel by leveraging the Domain Access Control Register
hardware feature in ARM architecture (ARM domain access
control, 2001).

Previous research on extensions used isolation primarily to
improve their reliability and fault isolation (LeVasseur et al.,
2004; Nikolaev and Back, 2013; Seltzer et al., 1996; Swift et al.,
2003). However, recently, efficient in-process memory isola-
tion for user space and its application has been demonstrated
by ARMlock (Zhou Y. et al., 2014) and Shred (Chen et al., 2016).
Domain Isolated Kernel (DIKernel) is the first approach of uti-
lizing this memory separation technique against kernel
extensions. The high-level concept of DIKernel is not new,
however, we found several non-trivial challenges while sepa-
rating the kernel. The details regarding design issues and the
challenges will be discussed in design in Section 3.

In this paper, we assume the kernel extension as the source
of attacks; and specifically aim to fortify the base kernel by de-
privileging the memory access permissions of such extension
codes. Kernel extensions have often been found not to be care-
fully written and reviewed relatively compared to the kernel
mainline code, thus likely to contain security vulnerabilities.
In the case of Linux, kernel extensions are known to be around
70% of the code base and could contain around 2/3 of its vul-
nerabilities (Chen et al., 2011; Xu et al., 2004). Hence, isolating
them from the main kernel component can make the system
more secure from various attacks such as kernel exploitation
or rootkits (Adore-NG 0.41, 2004; Knark 2.4.3, 2001).

Isolation of kernel extensions requires handling when there
is a control flow transition between base kernel code and kernel
extension codes. Depending on the usage model of kernel ex-
tension, we can enumerate several entry/exit points between
base kernel and extension. DIKernel interposes such control
flow transitions by redirecting kernel APIs (extension to base
kernel) and call back functions (base kernel to extension) to
a special trampoline code (DI-switcher) that changes the
memory domain. In short, the design of DIKernel restricts direct
memory access and control flow transition between base kernel
and kernel extensions, and provides a secure channel between
two entities.

We implemented our prototype of DIKernel on Linux 4.13.11.
Although our prototype implementation is based on Linux, we
expect the same concept and design principle could be ex-
tended to other commodity operating systems.

The contributions of this paper can be summarized as follow:

• First approach of using ARM’s hardware-based domain iso-
lation technique against untrustworthy kernel extensions.

• In-kernel code and data isolation without using memory
virtualization.

• Demonstrate a new kernel organization strategy. DIKernel
protects the base kernel (code and data) from malicious ex-
tension modifications despite both running at the highest
privilege level, through the use of efficient memory access
restriction.

• Provide an algorithm that considers code-reuse attacks to
securely switch between two domains.

• Implementation and Evaluation of DIKernel to demon-
strate its efficiency and security.

This paper is organized as follows: Section 2 discusses the
problem space DIKernel aims to address. Then we present our
system design and implementation in Section 3 and Section
4. We evaluate its performance and examine the security of
our system in Section 5. We contrast the related work in Section
6 and discuss the limitations of DIKernel and how it could be
improved in the future in Section 7. Section 8 concludes our
paper.

2. Problem overview

This section presents the rootkit problem and the require-
ments we have for a practical solution. It then discusses existing
solutions and how they don’t fulfill these requirements. Then
we define DIKernel assumptions and threat model.

2.1. Rootkit installation

The term “rootkit” denotes a set of tools which is used with
malicious intent to gain access to the system without the
knowledge of the administrator. The main purpose of a rootkit
is making a stealthy backdoor or neutralizing anti-virus soft-
ware by covertly changing the kernel code and data.

Inline hooking: redirects a legitimate kernel function to
another one. This is done by modifying kernel code at the be-
ginning and/or end of the targeted function.

Function Pointer Hooking: modifies control data (i.e. return
addresses or function pointers) to redirect the normal control
flow of the kernel. A very common example is the modifica-
tion of the system call or interrupt tables so that whenever a
specific system call or interrupt is triggered, the control flow
is redirected to the attacker will.

Direct Kernel Object Modification: modifies kernel data to
deceive the system and hide himself from detection. For
example, modifying the user ID information inside task_struct
kernel object effectively changes the security privilege of a
process. Similarly, manipulating the inode kernel object allows
to hide system resources such as files and process from the
viewpoint of various application tools (e.g., ps, ls) which obtains
system information via the filesystem interface.

These three techniques commonly used by rootkits all
require modification of code or data that are needlessly ac-
cessible to extensions.

Various attack cases suggest that the simple design of mono-
lithic kernels gives advantages to attackers mounting their
exploits. The single shared address space system design is evi-
dently not helpful in terms of mitigating attacks.

2 Inode is a Linux specific data structure concerning the file system
that contains critical information such as file owner, group and
access permissions.
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2.2. Secure extension isolation: Requirements

A solution to kernel extension exploits and rootkit attacks, is
to isolate extensions from the base kernel to protect sensi-
tive code and data. However, building boundaries in a system
that was not designed with them incurs three drawbacks. A
practical solution needs to minimize them:

R1 - Low Overhead: Creating a boundary means the system
will need to cross it. Since the performance of kernel is the
major factor that affects the overall system, any modifica-
tion that involves high performance overhead is
unacceptable. Our primary design goal aims to avoid such
performance overhead and consider practicality and
deployability.
R2 - Compatibility with existing code: Isolating compo-
nents for new design often involves creating an interface
for them to communicate; which might require modifica-
tion of legacy extension codes. Extension code is often
undocumented (in case of third party codes) and is hard-
ware specific so that it is not easily modifiable. A practical
solution must be easy to deploy in real-world. Hence, this
interface must be invisible for extensions so that their code
does not require to be modified. It also demands that no
additional hardware needs to be installed.
R3 - Robustness against attacks: Rootkit and kernel exploit
attacks corrupt/manipulate various data inside the kernel.
In order to make a robust defense system, all the possible
attack vectors should be carefully addressed. Our goal is to
protect the critical kernel data even under the presence of
rootkit and exploits in extensions by de-privileging and sani-
tizing their memory access capability against base kernel
memory region.

2.3. Existing solution

Several methods or mechanisms are proposed to mitigate
rootkit attacks. However, they often fail to meet some of the
above requirements.

A large body of research (Azab et al., 2014; Jiang et al., 2007;
Lee et al., 2017; Payne et al., 2008; Petroni and Hicks, 2007;
Petroni et al., 2004; Rhee et al., 2009) has been dedicated to
rootkit detection. These tools may be placed in kernel space,
at the same privilege level as rootkits. Since detection tech-
niques do not prevent infection from happening, but intend
to detect and sanitize it afterwards, attackers have the oppor-
tunity to directly target and disable them, as shown recently
(Phrack article, 2016).

Some protection tools can also run in another address space,
based on hardware as TZ-RKP (Azab et al., 2014), or based on
virtualization as Lares (Payne et al., 2008). While they are safely
isolated from the kernel (which is discussed in Section 6), these
methods add a context switch between the kernel space and
their higher privilege system components, which requires a sig-
nificant mode switching overhead.

In the case of signature or behavior based detection, at-
tackers often bypass the defense with small efforts of
transforming their signature, or using transient timing attacks.

Integrity monitoring tools like Copilot (Petroni et al., 2004)
and KI-Mon (Lee et al., 2017) require extra hardware, or only

cover the integrity of specific regions like HookSafe (Wang et al.,
2009). Furthermore, even if detected, some attacks need system
reboot or hardware replacement to be reverted (Zaddach et al.,
2013). Running only pre-approved code effectively neutral-
izes kernel malwares (Riley et al., 2008; Seshadri et al., 2007),
but suffers from compatibility issues.

Other extension isolation approaches have focused on the
reliability of the system. They focus on avoiding fatal system
failure caused by unintended errors in kernel extension codes
rather than securing the system in terms of malicious attacks
caused by software vulnerabilities (Bershad et al., 1995; Herder
et al., 2009; Seltzer et al., 1996; Zhou et al., 2006). DD/OS and
VirtuOS (LeVasseur et al., 2004; Nikolaev and Back, 2013) isolate
kernel extensions by placing them inside a specially dedi-
cated address space using memory virtualization techniques,
however they suffer from relatively slow performance.

The major advantages of DIKernel are that it is a preemp-
tive defense solution with low performance cost (domain
switching is cheaper than context switch or memory
virtualization), and it does not require external hardware add-
on. We achieve such benefits by utilizing the domain
management system provided in ARM architecture.

2.4. Assumptions and threat model

We assume that the CPU of the system provides support for
ARM domain access feature (ARM domain access control, 2001)
(currently supported by ARMv6 and ARMv7). I/O Memory Man-
agement Unit (IOMMU) is assumed present. The base kernel
is the kernel after its initialization is complete, before any code
is dynamically loaded as modules.

We consider kernel extensions have vulnerabilities thus con-
sidered as the source of attacks and assume the base kernel
is intact. We assume the kernel is loaded intact with a secure
boot mechanism such as UEFI (Unified, 2010). Every compo-
nent in user space and any dynamically loaded kernel module,
but the switcher module (special trampoline code of DIKernel
design, described in Section 3.2) is regarded as malicious. The
attacker in our threat model is capable of running existing
kernel codes only by first calling the special trampoline area
(referred as DI-switcher) but not the codes of other kernel code
section (.text) as they are inaccessible by domain isolation. Also,
the malicious kernel module is assumed not to include any in-
structions that can change CPU domains or the register pointing
to the top of the page tables inside its code; which is a plau-
sible assumption in ARM as RISC architecture does not allow
unaligned instruction (Cortex-A7 MPCore technical reference
manual, 2011), thus we can easily scan entire codes before
loading it inside the kernel.

Any external hardware device apart from the CPU, the
memory controller and system memory chips, are consid-
ered to be potentially under the attacker control. The trusted
computing base (TCB) is reduced to the base kernel.

Devices are sometimes able to corrupt each other by the
communication channel between themselves, or by the IOMMU
buffers that are sometimes shared. In this way, extensions could
attack each other bypassing any in-kernel protections. We
exclude protection between different extensions in our defense
design. Finally, our threat model does not include Denial of
Service (DoS) attacks.

132 c om pu t e r s & s e cu r i t y 7 4 ( 2 0 1 8 ) 1 3 0 – 1 4 3



3. Design

3.1. Background: Domain access control

Domain Access Control Register (DACR) is a rarely considered
ARM CPU feature. It is a per core 32-bit privileged register. Since
it is a per core register, domain separation natively supports
parallel computing. Being a privileged register, it can only be
accessed in supervisor mode.

As shown in Fig. 1, DACR is divided into 16 2-bit fields, each
field corresponding to a memory domain. The corresponding
memory of a domain is set by the domain ID, a 4-bit flag in
the Page Directory Entry (PDE). Thus, each domain is divided
into 1 MB chunks.The 2-bit fields of the DACR register can have
4 values: No Access (0b00), Client (0b01), Reserved (0b10) and
Manager (0b11). Any access to a “No Access” memory area will
trigger a domain fault. Client means that the memory access
will happen as usual, it lets the page table to determine the
access right; this is the default setting. Manager mode ignores
permission bits in the page table and allows unlimited access.
Reserved mode is not used.

Upon a memory access, the Memory Management Unit
(MMU) checks the domain which the requested memory belongs
to, and its access permission in the DACR register. Then, it de-
termines whether or not the access should be allowed based
on the access level and the permission bits in the page tables.
The manager mode is used by default in Linux when switch-
ing to privilege mode so as to bypass the permissions bits check
for optimization.

The big benefit of using memory domains is that switch-
ing between them is a very quick process: update the DACR
register suffice to close a domain (setting it to No Access) and
to open another one (setting it to Client or Manager mode). It
only involves one instruction and doesn’t require any memory
updates or Trusted Lookaside Buffer (TLB) flushing.

By default, domain 0 is reserved for kernel space, domain
1 for user space and domain 2 for I/O memory. We additionally

use domain 3 for the DI-switcher (describe below, Section 3.2)
and extensions.

3.2. DIKernel switcher

DIKernel is implemented by inserting a layer between the base
kernel and its extensions. It intercedes all interactions between
the extensions and the kernel to enforce isolation and com-
patibility with existing extensions. We refer to this special layer
as DI-switcher.

DI-switcher is a module loaded at the end of the kernel ini-
tialization. All its code and data are placed in the same domain
as other extensions. This domain is always set in client or
manager mode. DI-switcher code is critical in terms of secu-
rity since it is always accessible by attackers; it can be potentially
exploited for code reuse attacks, thus allows attackers to execute
forbidden instructions (regarding DACR manipulation). There-
fore, DI-switcher code needs to be carefully designed considering
various possibilities of being abused by code reuse attacks. We
later demonstrate that our design and implementation of DI-
switcher guarantee the safety against such attacks in Section
3.5.

DI-switcher has three roles. First, it enforces memory access
isolation between the base kernel and the extensions. It opens
and closes the different domain to protect the code and data
of the base kernel. An extension should never be able to di-
rectly access anything from the base kernel without using the
proper access channels.

Isolation of the code and static data memory (global vari-
ables) is achieved by manipulating the page tables and mapping
the pages into domain 3 while loading the extension image
into the kernel.

In order to isolate the kernel stack between extensions and
base kernel, we spawn a kernel thread for potentially unsecure
extensions and impose domain 3 for the new stack. In par-
ticular, DIKernel introduces additional stack layer (kernel
extension stacks) on top of existing system stacks such as user
stacks, kernel stacks, and interrupt handler stacks. The

Fig. 1 – ARM Domain Access Control Register use example.
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DI-switcher is responsible for the kernel thread management
and assignment to extensions. Isolating the heap into domain
3 can be accomplished by using standard methodologies
(Akritidis, 2010) for changing the dynamic memory allocator.
Once memory isolation is achieved, an interface is required to
cross the boundary in both ways; from base kernel to exten-
sions and vice versa.

The second role of the DI-switcher is interposition, it su-
pervises all inter-domain control transfers and provides a secure
interface between base kernel and extensions. Whenever the
base kernel wants to call some extension code, it first calls the
DI-switcher in order to close the base kernel domain, then
jumps to the targeted extension code. The reversed way works
similarly, the extension first calls the DI-switcher that will open
the base kernel domain and then jump to it. These calls are
made through wrappers described below (Section 3.3).

Kernel APIs such as kmalloc or vmalloc are specially
handled in DI-switcher in order to use the isolated heap
memory. Overall, entire memory access of the extension is iso-
lated in a different domain from the base kernel: its code, stack
and heap. As can be seen in Fig. 2, base kernel domain is closed
while extensions are executed so that they are not able to di-
rectly access any of the base kernel code or data. Therefore,
DIKernel prevents techniques seen in Section 2.1.

However, in some cases, violating the security protection
of DIKernel could be considered as a normal behavior. For
example, there are some edge cases in special kernel exten-
sions which requires to directly access some kernel data
structures. Since such circumstances are rare (Swift et al., 2003),
we can register such extensions to let the domain fault handler
exceptionally allow it.

Sensitive data like task_struct are allowed to be read by
extensions, but not modified since there is no need for it. Dedi-
cated memory is allocated for such data and the structure is

copied on demand; thus allowing the read access, but pre-
venting the write attempt against original data structure.

The DI-switcher also interposes interrupts to guarantee that
there is no crash in case the base kernel is closed when the
interrupt occurs. It opens the base kernel, executes the tar-
geted code, and then writes the DACR register back as it was
before the interrupt occurred.

The third role of the DI-switcher is to ensure compatibil-
ity with existing extension code. Redirecting the kernel APIs
by hooking the kernel symbols, and changing the stack, heap
into the isolated memory region happens transparently without
altering any existing codes or logics of the extension.

Since the DI-switcher is one of the core components of
DIKernel design, it is important to prevent this module from
being deliberately unloaded by rootkits. We insert a check in
the delete_module kernel API to prevent the DI-switcher
removal in any case. One can imagine that unloading a kernel
module can also be accomplished by sophisticatedly manipu-
lating metadata of kernel modules, or manipulating the page
table mappings. However, we note that basic security enforce-
ment of DIKernel preempts to stop such manipulation attempts
as it isolates all such memory regions into isolated domain.

3.3. Wrapper

Wrappers are used to interpose kernel functions that can be
called by extensions. Before and after calling functions in the
base kernel or in an extension they will update the DACR reg-
ister according to our access policy. The base kernel domain
is always closed when untrusted extension code is execut-
ing. On the other hand, all the domains are open while the base
kernel code is executing.

Wrappers also encapsulate kernel calls into extension. In
this case, the kernel code has to be directly modified to call a

Fig. 2 – Domain Isolated Kernel approach overview.
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wrapper in the DI-switcher. For example, this is the case for
module init and exit function, or for the functions that are reg-
istered for drivers.

Most of the wrapper code is shared, but as mentioned above,
some wrappers occasionally need to execute extra opera-
tions if they involve passing kernel data or dynamic memory
allocation.

The entry and exit gate is the key of domain transitions since
they update the DACR value. There is only one such gate for
each way and they are shared among all wrappers. We em-
phasize that the entry gate is the only entry point from the
extensions to the base kernel.This is an important design point
for preventing code reuse attack; we explain more details below.

3.4. Secure switching

The entry and the exit gates are critical to the enforcement
of the isolation between the base kernel and extensions. The
gate code is considered always exposed to attackers since it
is in the same domain as extension. No data in the extension
domain can be trusted. The DI-switcher has to be developed
with this consideration and the gates in particular.

For the switching between extensions and the base kernel
to be secure, the switching mechanism must prevent any ex-
tension code from regaining control while the base kernel
domain is open.Therefore, the exit gate is not the main concern
since it doesn’t give access to the base kernel. On the other
hand, the entry gate must be deterministic and exclusive in
order to be secure.

3.4.1. Deterministic execution
The entry gate semantic is controlled and cannot be changed
by any input. Since it is always exposed to extensions, its ex-
ecution must not trust any input and lead to a unique outcome.
The possible values for updating the DACR register is hardcoded
in the code, which prevents attackers from corrupting it with
arbitrary value.

3.4.2. Exclusive access to the base kernel
The entry gate must be the only way to enter the base kernel.
Opening the base kernel domain implies writing the DACR reg-
ister which is done with a particular instruction. We thus make
sure this instruction is not present in any extension. This is
done through de-privileging extensions, which is detailed in
Section 3.6.

3.4.3. Atomic domain transition
In case an attacker can control the interrupt handler, the
domain transition process must be atomic. Otherwise, an at-
tacker can jump into an instruction which changes the domain;
then interrupts the execution flow immediately before the con-
firmation routine is executed. However, the attack model of this
paper does not allow the attacker to manipulate the inter-
rupt handling.

The essence of DIKernel is isolating the potentially untrusted
kernel extensions from the base kernel. The basic motivation
of this paper stems from the fact that dynamically loaded

extensions are relatively insecure than the well reviewed base
kernel code. Assuming such attack model, we can trust the in-
terrupt handler codes, therefore the privilege transition of
DIKernel does not have to be atomic as our attack model does
not involve malicious interrupts. Unlike other approaches that
suppose high privilege infection without assuming address
space isolation like nested kernel (Dautenhahn et al., 2015) and
SKEE (Azab et al., 2016), we don’t have to worry about the at-
omicity of the gates because the interrupt handling is trusted
and relevant data structures are isolated from in place.

3.5. Secure gates

As said in Section 3.4, gates have to be designed carefully
because they are always exposed to extensions. The imple-
mentation of DIKernel must guarantee to disallow the extension
codes from accessing the DACR and TTBR registers. Such reg-
isters can only be changed by particular instructions. As detailed
in Section 3.6, DIKernel does not let this instruction to be loaded
in any extension code or to be generated at runtime. There-
fore, the two gates are the only locations outside of the base
kernel where this instruction is present.

DIKernel have to prevent an attacker from jumping to this
code with his own crafted DACR value to be loaded. To do so,
the DACR value should be fixed, written in the code. Since the
MCR instruction requires a general-purpose register (R0-R12)
to contain the value loaded in the DACR, it is not possible to
write a single instruction that updates DACR with a fixed value.
As DACR update requires multiple instructions (1. setup DACR
value in a register, 2. execute MCR instruction), an attacker can
set up an arbitrary DACR value in a register and directly jump
into the MCR instruction, then regain the control flow; which
will effectively bypass the DIKernel isolation. To prevent such
code-reusing attack, the register containing the DACR value is
compared with a hardcoded number immediately after MCR in-
struction is executed. If the register value does not match to
the hardcoded number, execution flow jumps back to the be-
ginning of the DACR update code until the updated DACR value
is confirmed to be correct. Therefore, an attacker cannot regain
the execution flow if the changed DACR value is different from
the fixed value.

Details can be seen in the code snippet below. Lines 3–4 is
the instruction loading the DACR value. After the DACR is
written (line 5), we compare it to a fix value (line 8) and go back
to writing the DACR of the value loaded is not the expected
one (line 10).

Another important design for DIKernel security is that an
attacker should never be allowed to hijack the execution flow
between entry and exit gate. In order to guarantee this, DI-
switcher implementation does not use any data that affects
the control flow dynamically (e.g., return address from the stack,
or function pointer), the execution path from entry/exit gate
and base kernel/extension is hardcoded thus deterministic.
Hence, extensions should not be able to regain the control flow
between the entry gate and the following exit gate call by ma-
nipulating data structure that affects the control flow.

As can be seen in Fig. 3, there are two cases where the entry
gate can be called. In the first one, an extension calls a base
kernel function, the entry gate is called, the function is
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executed and then returns to the extension via the exit gate.
In this case, extensions do not have the opportunity to corrupt
any of the base kernel data that could be corrupted to redi-
rect the base kernel control flow.

In the second case, the base kernel is executing, then calls
an extension that executes and then returns to the base kernel.
This case has to be carefully treated. If the base kernel and the
called extension would share the same stack, the extension
would have the opportunity to corrupt control data the base
kernel would use when called back. Hence, the extension would
be able to redirect the control to itself while the base kernel
domain is open. Therefore, before the exit gate is called we
switch to another stack for the extension to be run on, and
execute the called extension function. When the base kernel
is called back, the stack is switched back to its original. We note
that DACR is a per core register, therefore an extension running
on one core cannot corrupt the base kernel data running in
another core.

To avoid relying on the extension stack, in particular for
control data as return addresses, the entry gate is defined as
a macro rather than a function. In case a memory pointer pro-
vided from extension must be used, we sanitize such pointer
by checking its first level descriptor in the page tables, to check
the value of its domain.

Control flow redirection based on interrupt mechanism is
considered to be safe in this paper as we prevent extensions
from changing the interrupt handler. Therefore, we consider
interrupts received while a gate is executing are not a threat
to the enforcement of DIKernel isolation.

3.6. De-privileging extensions

DIKernel relies on the ARM domain feature to isolate exten-
sion from the base kernel. As detailed in Section 3.1, this feature
uses bits in the page tables and CPU per core registers, DACRs.
Both abilities need to be removed from extensions so that their
isolation is enforced.

Extensions are not able to modify page tables by design since
they are in the base kernel area. In order to prevent exten-
sion codes from changing the domain, we restrict the access
to DACR and TTBR register by scanning the extension code
before loading it into the kernel. If it does, the extension loading
is rejected. Also, we forbid the extension from generating ex-
ecutable code at runtime by restricting the use of page
permission of related kernel APIs. We refer to these protec-
tion mechanisms as extension de-privileging.

Fig. 3 – Entry and exit gates two usage cases. In the first one, a kernel extension calls a base kernel function. The base
kernel then returns to the extension. In the second case, the base kernel calls an extension, then returns to the base
kernel. Both calls are interposed by the DI-switcher to modify the DACR value.
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De-privileging extensions does not require any alteration
of their code. The extensions do not have to be recompiled in
order to enforce DIKernel security policies.

Scanning specific instructions from extension is fairly
straightforward task as the ARM architecture uses fixed length
instruction encoding. This makes sure that a non-malicious
extension cannot inadvertently contain an unwanted instruc-
tion as it could happen in x86 architecture that allows unaligned
access.

Although an extension passes the initial scanning of re-
stricted instructions (DACR manipulation, etc.), an attacker could
try to generate his own code containing such instruction at
runtime. DIKernel handles such attempts by ensuring the kernel
extension does not obtain any additional executable pages once
it has been loaded into the kernel. As the page tables are part
of the base kernel domain (Domain 0) any extension code
running in the isolated domain cannot directly modify the page
table without alarming the base kernel’s domain fault handler.
In case the extension uses kernel APIs such as do_mmap, the
DI-switcher monitors the requested page permission and forbids
the extension from having a newly executable page.

3.7. Attack vectors against DIKernel

DIKernel goal is to ensure extensions cannot modify any of the
base kernel data (except special access created for wrap-
pers). We want to make sure an attacker cannot bypass the
DIKernel isolation scheme in any way.

We identified six possible ways to bypass DIKernel:

• Modifying the system call or interrupt table to gain control
over the system while the base kernel domain is opened.

• Since ARM domain access control technology that we are
using for isolation entirely relies on page tables, an at-
tacker could create fake page tables and point to them as
the used page tables.

• Updating the DACR to open the base kernel domain.
• Regaining the control flow post entry gate by modifying

control data (i.e. return address, function pointer) while the
extension is executed.

• Injecting newly crafted code that could modify DACR or re-
direct the top of the page tables so as to open the base kernel
domain.

• Finally, an attacker could just unload the DI-switcher module
so that isolation is not enforced.

3.7.1. System call or interrupt table modification
It is a common technique to install itself in a system and a
convenient way to set up specific call back. However, these
tables are marked as read-only in the page tables. Hence, at-
tackers need to modify the page tables in order to be able to
modify the system call or interrupt tables. DIKernel protects
page tables from direct modification and since all kernel APIs
are interposed, it is also able to check the arguments of func-
tions, as do_mmap, that are able to modify the page tables.

3.7.2. Fake base tables
The page tables are pointed by the TTBR register which is read
and written by a privileged instruction. An attacker could craft

his own page tables and change the TTBR to point to it (Jang
et al., 2014). However, we remove the extension ability to access
the TTBR register as mentioned in Section 3.6.

3.7.3. DACR update
As above, DACR is read and written using a privilege register
which we remove access from extensions.

3.7.4. Regaining control post entry gate
It would defeat the whole purpose of DIKernel if an exten-
sion was able to regain the control flow after the entry gate
is executed and the base kernel domain is opened. To prevent
this, as detailed in Section 3.5 we avoided using any control
data after the entry gate as much as possible. When control
data is used, it is placed in the base kernel domain and only
a pointer to it is let under the extension access. Once the base
kernel is opened, we verify it is directed toward data in the base
kernel domain by reading the page table.

3.7.5. Code injection
Since we prevent extensions to run certain instructions, an ex-
tension could try to create data and mark it as executable. As
for the system call or interrupt tables modification attack, it
requires to modify the page tables. This capability is removed
from extensions. We assume ARM PxN (Kernel.org, 2014) is
enabled, thus it is not possible for extension to execute user
code in privilege mode.

3.7.6. Unloading DI-switcher module
This has been disallowed by inserting a check in the base kernel
code. Otherwise, an extension could force a situation where
the base kernel domain would not be closed before exten-
sions are called.

4. Implementation

Our implementation is based on Linux version 4.13.11, and
tested on a Raspberry Pi 2 model B, which has a Broadcom
BCM2836 chip with a 900 MHz quad-core ARM Cortex A7
(ARMv7) processor.

4.1. Linux patch

While our design does not require modification of kernel ex-
tension codes, additional implementation on top of the main
kernel is required with minimal alteration of existing code.
Indeed, DIKernel can be considered as any other Linux kernel
update. Its modification does not rely on a specific kernel feature
and would be easy to adapt to another Linux version or even
another operating system like BSD. DIKernel code is mostly
gathered in new dikernel/ and drivers/diswitcher/ subdi-
rectories, and modification to the existing Linux code is made
to call our newly created code (Table 1).

The main kernel modification has two goals. First, we modify
the two system calls that can be used to load a module in kernel
space, init_module and finit_module, so that when the
module code is allocated, its domain ID is modified.
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Moreover, when the kernel calls into extension, we need to
modify these calls to go through the DI-switcher first so that
it can close the kernel domain before executing the exten-
sion codes. In particular, the init and exit functions of every
module need to be called this way.

The initial prototype of DIKernel was adopted against Linux
4.1.13 which was the latest version at the time. Final imple-
mentation of DIKernel uses Linux 4.13.11 which is the latest
stable version at the time of publishing this paper. Current
version of ARM Linux kernel, which the final version of DIKernel
is adopted, fully supports DACR security features including user
space memory access restriction which lacked before 4.3.

4.2. Wrappers

In the general Linux environment, symbols are used as an in-
terface for accessing extension code or data from base kernel.
Symbols are variables and functions that are exported. The
kernel dynamically retrieves them from the extensions when
they are loaded.

Since, the base kernel domain is closed while they are ex-
ecuting, extensions cannot directly call base kernel functions
without causing a system failure. Thus, for extensions to be
able to access kernel API, symbols are modified as to point to
point to a wrapper in the DI-switcher. Wrappers are in charge
of opening the base kernel, calling the originally intended base
kernel argument, closing the base kernel domain back, and
passing return argument to extensions. Other than the addi-
tional support for user space memory access restriction issue
(which does not involve the goal of this paper), the rest of the
domain related features related to this paper are not changed
by kernel version.

When the return argument is a pointer to base kernel data,
we have to allocate memory, change its domain and copy this
structure into the allocated memory and return a pointer to
this copy to the extension. Hence, extensions can have a read
access to base kernel data, but no write access.

We modify symbols at the end of the kernel initialization,
after the DIKernel switcher extension is loaded. This way, we
don’t disrupt the base kernel and the DI-switcher internal
symbol usage, but we ensure that all extensions that will be
loaded in the future will use the modified symbol value.
Symbols are redirected to their corresponding wrapper in the
DI-switcher code.

Similarly, to ensure the kernel will not crash when the
system receives an interrupt (including the common system
call case), the interrupt handler can be modified so that it first
calls a function in the DI-switcher. It would then open the base
kernel domain and call the original handler specific to this in-
terrupt. Unlike Intel, ARM involves no register to point to the
interrupt table. Hence, DIKernel can ensure an attacker would
not be able to abuse the interrupt process.

Symbols concerning data are also modified after the kernel
initialization, but are more complicated to wrap since their value
needs to be updated. If this data contains a pointer, the pointed
data has to be updated as well. The update_wrapper func-
tion is called when the module starts and whenever a kernel
API function is called that could have modified this data symbol.

5. Evaluation

5.1. Performance

We evaluated the performance impact of DIKernel by mea-
suring the speed of function call between base kernel and
extension. To measure the time precisely, we use the ARM per-
formance counter and get the clock cycles while issuing a
function call that involves domain transitions.

Tables 2 and 3 summarize our evaluation on Rasberry-pi
ARMv7 board. The evaluation measures the overhead on the
three operations DIKernel needs to interpose: (i) the loading
of extensions, (ii) the call of extension functions from the base
kernel, (iii) the call of kernel APIs from an extension. Each op-
eration is performed more than 1000 times for accurate
result.

The overhead on module insertion have low impact on the
overall system performance since it usually is only done once
at the system boot, we notice it has an overhead of about 20K
clock cycles. It is the result of walking the page table in order

Table 1 – Number of added or modified line in Linux
kernel code.

arch/arm/ 2
include/linux/ 2
init/main.c 6
kernel/module.c 5
drivers/base/ 1
Total mainline modifications 17
include/linux/dik/ 75
dikernel/ 571
drivers/diswitcher/ 929
Total appended lines 1575
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to change the extension domain. The scanning of DACR and
TTBR modifying instruction is not included in this evaluation.

On the other hand, the overhead to call an extension, that
is measured in the case of the module_init call can be fre-
quently repeated. For example, in Linux, extensions are often
used via the ioctl interface which involves a base kernel to
extension call; triggered by userspace application. Since there
are no publicly available application benchmarks for measur-
ing the performance of kernel to extension function calls, we
made a dedicated cycle-level microbenchmark. According to
the microbenchmark result, function calls to extension from
base kernel required 1.6K additional clock cycles for the domain
transition.

Wrappers interpose extension kernel API calls. Generally,
wrappers operations are fairly straightforward: (i) they
need to open the base kernel domain, (ii) call the base
kernel function, and (iii) close back the base kernel and pass
the return value to the extension. As can be seen for
–aeabi_unwaind_cpp_pr0 and platform_diver_unregister

this involves little overhead.
However, wrappers for other kernel APIs as kmalloc and

kfree involve more operations. Once the original function
is called, they need to synchronize the copy of the
kmalloc_caches data structures with their current value. More-
over, kmalloc needs to walk the page table to change the
domain ID of the newly allocated memory. Nevertheless, wrap-
pers are shown to involve 1.3K clock cycles overhead or less.

Comparing DIKernel to the other most practical solution,
placing extensions in a virtual machine (LeVasseur et al., 2004;
Nikolaev and Back, 2013), the induced overhead is much more
lightweight. A domain transition has been shown to cost at most
1.6K clock cycles for both directions, from base kernel to ex-
tensions (calls to extension init function) and from extensions
to base kernel (calls to kernel APIs). Moreover, this also in-
cludes some synchronization operation in kmalloc and kfree

cases.
On the other hand, process based isolation or virtualization

based isolation performance cost depends on the speed of
context switches. A process context switch is generally an

expensive operation that requires usually around 30K clock
cycles and up to millions of cycles3 (Li et al., 2007).

The strength of DIKernel performance wise, is that once the
domains are set up by modifying the page tables, switching
from the execution environment from the base kernel to the
extensions only requires updating the DACR which is a single
register access operation. On the other hand, process based iso-
lation involves switching the page tables and flushing the TLB
which is a memory access operation.

5.2. Security

The security effectiveness of DIKernel is provided by prohib-
iting direct memory access from extension to kernel memory.
The majority operations of rootkits are blocked under the
DIKernel environment. Table 4 is the summary of popular
rootkits and their manipulation targets. We can summarize the
main targets of such rootkits: (i) system call table, (ii) module
metadata, and (iii) file system related data structure such as
inode.

5.2.1. System call table manipulation
Manipulation of the system call table is a classic rootkit attack
example. Recent kernel does not allow direct manipulation of
system call table by marking the page read-only. However, fully-
privileged rootkit can easily bypass such protection by changing
the page permission. DIKernel does not allow page table access
to untrusted extensions, therefore direct manipulation attempt
against the system call table is blocked.

5.2.2. Module metadata manipulation
Rootkits often hide themselves from the extension linked list
which is maintained by the kernel. The essence of this ma-
nipulation is to remove the extension (rootkit module) metadata

3 Context switch cost is a high variance operation that depends
on the cache architecture and scheduling mechanism.

Table 2 – Module loading and init function call measured in clock cycles.

Module Loading time Init function call time

DIKernel turned off DIKernel turned on DIKernel turned off DIKernel turned on

Blank module 304K 318K 13.7K 15.0K
clk_hifiberry_dacpro 380K 407K 17.4K 18.7K
bcm2835_rng 454K 478K 16.6K 18.3K

Table 3 – Kernel APIs call measured in clock cycles.
kmalloc called to allocate only 4 bytes.

Kernel API DIKernel
turned off

DIKernel
turned on

kmalloc 239 1586
kfree 319 1625
platform_diver_unregister 37,094 37,305
–aeabi_unwaind_cpp_pr0 18 96

Table 4 – Known rootkits targeting the base kernel.

Rootkit name Affected base kernel data structure

Adore-NG 0.41 inode, task_struct, module

Knark 2.4.3 proc_dir_entry, task_struct, module

Kis 0.9 proc_dir_entry, tcp4_seq_fops, module

EnyeLKM 1.3 module

Adore-NG 0.56 proc_root_inode_operations,

ext3_dir_operations,

ext3_file_operations, unix_dgram_ops

override system_call_table

Sebek 3.2.0 system_call_table
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from the global linked list, yet preserves all the actual con-
tents in memory and page table. In order to perform this
manipulation, rootkit should access the kernel memory that
saves the linked list head data structure.The design of DIKernel
does not allow such access without alarming the base kernel
(interrupt handler).

5.2.3. Inode manipulation
Inode is also a common target of rootkits. The kernel main-
tains convoluted data structures regarding the file system such
as inode. By changing some member variables inside such data
structure, rootkits can hide specific files and various system
information (by manipulating the proc file system). Due to the
presence of DIKernel, stealthy manipulation attempts against
critical kernel data become infeasible.

6. Related work

6.1. Rootkit mitigation

The first answer to malware exploiting Kernel vulnerabilities
is to patch them directly or to mitigate their impact with fea-
tures such as non-executable pages, supervisor mode access
prevention, or supervisor mode execution protection. While
these techniques greatly improve the overall kernel security,
attackers still find ways to bypass them.

Considering, a monolithic kernel code base is so large that
it cannot be patched not to contain any exploitable vulner-
ability, the ensuing approach is to let attacks happen, but to
detect them in hope to be able to reverse the system state to
a healthy one. However, since detection tools have to be placed
in the kernel address space as well, they can also be targeted
and defeated by rootkits. As shown by recent attacks like
E-DKOM (Graziano et al., 2016) and “hypervisor for rootkits”
(Phrack article), attackers can either outsmart these tools to
still hide themselves, or they can target and disable them di-
rectly. Rootkits and monitoring tools are engaged in a race of
counters where, ultimately, the attacker always has the ad-
vantage of the initiative.

Copilot (Petroni et al., 2004) and later KI-Mon (Lee et al., 2017)
are hardware-assisted solutions using a PCI device to monitor
the RAM by either taking snapshots or spoofing its modifica-
tion. Information is then sent to another monitor machine over
an independent communication link to check the kernel binary
text and certain code pointers are not modified to an unknown
value. They require heavy architecture installation in order to
be used.

Hardware-based protection approaches are monitoring tools
that rely on the isolation provided by hardware so that malwares
are not able to target them. For instance, TrustZone is used by
TZ-RKP (Azab et al., 2014) and SPROBES (Ge et al., 2014) to run
in a secure world where only approved applications can be ex-
ecuted. Aside from the incompleteness entailed by any detection
approach, the context switch between the secure and the
normal world is more expensive than domain transition (evalu-
ated by TZ-RKP (Azab et al., 2014) to be over 2K clock cycles
for a round trip). The purpose and design of TrustZone differs
from domain isolation which provides multiple memory regions

with different access rights. TrustZone uses dedicated global
system registers and its page tables with additional operat-
ing system running inside the secure world.

Security tools can also benefit from virtualization and the
isolation it provides. For practical reasons, they are usually run
alongside the hypervisor. Yet, common hypervisors suffer from
the same issue than monolithic kernel: since they must provide
guest OSes many functionalities (i.e. resource allocation and
hardware peripheral virtualization), they have a very large code
base, thus both VMware and Xen have a growing number of
vulnerabilities (CVEdetails.com, 2017a, 2017b).

Lares (Payne et al., 2008) places hook in the kernel to be able
to actively monitor the kernel, analyze its behavior and detect
rootkits. Besides being as vulnerable as the platform it runs
on, Lares dynamic analysis is incomplete and cannot ensure
rootkit detection. HookSafe (Wang et al., 2009) uses a method
very similar to Lares, but to prevent kernel control data (i.e.
function pointers) from being modified.

So as not to rely on higher privileged system components,
Nested Kernel (Dautenhahn et al., 2015) and SKEE (Azab et al.,
2016) create a lightweight, isolated execution environment
within a monolithic kernel by depriving it from the capabil-
ity to modify the system’s memory layout, respectively on the
x86 and the ARM architecture. Their protected address space
can then be used to run monitoring tools. Unfortunately, both
techniques were found not to be practical: Nested Kernel can
only operate on a single core system, and SKEE has high per-
formance overhead.

NICLKE (Riley et al., 2008) and SecVisor (Seshadri et al., 2007)
prevent rootkit from loading their own code and executing it.
They perform real-time kernel code authentication so that only
authenticated kernel code is allowed to be run. Recently de-
veloped return oriented rootkits (Hund et al., 2009) can defeat
this defense scheme.

6.2. Decomposition and isolation

Rather than addressing kernel infection by countering attack
strategies, another approach is to decompose the kernel to
reduce its attack surface.

Micro-Kernels as L4 (Liedtke, 1995) or Minix 3 (Herder et al.,
2006) restructure commodity OSes by only providing essen-
tial resource management functions like task scheduling and
IPCs4 in the kernel while moving the rest, kernel extensions
included, in the user space. Although this provides high as-
surance, it requires extensive OS re-design and can cause high
performance loss, which is what we want to avoid. Hybrid
kernels such as Windows NT have a similar structure, except
most of their components are in the kernel address space.
Microsoft dropped the project because of its performance issues.

Likewise, Wimpy Kernel (Zhou Z. et al., 2014) tries to provide
on-demand isolated I/O to application by taking away some
of the driver functionalities from commodity OS and
re-implemented them as a user process relying on a
microhypervisor. It requires drivers to be re-designed with dif-
ferent OSes primitives, which we are trying to stay away from.

Several approaches (Bershad et al., 1995; Boyd-Wickizer and
Zeldovich, 2010; Herder et al., 2009; LeVasseur et al., 2004;

4 Inter-Process Communication.
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Nikolaev and Back, 2013; Swift et al., 2003; Zhou et al., 2006)
exist to isolate kernel extension from the base kernel or move
them to user space. However, their primary purpose is im-
proving the system reliability and fault isolation. In particular,
DD/OS (LeVasseur et al., 2004) and VirtuOS (Nikolaev and Back,
2013) run unmodified extensions in separate virtual ma-
chines. SUD (Boyd-Wickizer and Zeldovich, 2010) places drivers
in a user space process. While they have achieved both com-
patibility and strong isolation, their high performance cost
makes them unpractical.

Nooks (Swift et al., 2003) is a closely related work to ours
that mainly differs in two ways. First, our goal is to securely
isolate the base kernel from the kernel extensions, while Nooks
aims at enhancing the OS reliability and being able to recover
from extension failures. Second, Nooks relies on copying page
tables to create its isolated domains, synchronizing them and
flushes the TLB when switching domain. As a result, commu-
nication between the base kernel and extensions is very
expensive.

ARMlock (Zhou Y. et al., 2014) and shreds (Chen et al., 2016)
are DACR based isolation solutions targeting user space
malwares using in-process memory isolation. ARMlock is a
sandboxing like solution to safely use libraries without in-
creasing the potential vulnerabilities of an application. Similarly,
shreds are secure execution units by having their code and
memory isolated from the rest of the process.

7. Limitations and discussion

DIKernel isolate the extensions from the base kernel.Thus, con-
taining attacks coming from the perspective of the base kernel.
However, an attack that achieves to exploit an expansion could
spread in the user space. If a user that is limited in its access
rights succeeds in exploiting an extension and is able to execute
arbitrary code (using in kernel ROP (Hund et al., 2009) for
example), it can read security critical files like /etc/shadow and
gain access to every user. DIKernel achievement is to protect
code in the kernel space; the user space is not DIKernel focus.

DIKernel in its current state does not prevent attacks coming
from the base kernel. DIKernel is not able to protect monitor-
ing tool from the base kernel as nested kernel (Dautenhahn
et al., 2015) and SKEE (Azab et al., 2016) can, or even hard-
ware TEE solutions like TIMA (Azab et al., 2014) do unless it is
reworked in a major way. DIKernel goal is to narrow the attack
surface.

In the rare case where an extension has to directly access
kernel data to modify it (Swift et al., 2003), we have to write a
specific wrapper to copy and synchronize data, or register such
extension and let them access the base kernel domain. This
breaks our R1 isolation requirement since some extensions are
able to modify some kernel data. As discussed in Section 3.2,
this shows the limit of our model, where containment and iso-
lation conflict with compatibility. Existing code wasn’t designed
considering our isolation scheme.

Direct Memory Access (DMA) lets an external device read
or write in the memory without using virtual memory, thus
bypassing our MMU based isolation. Therefore, an extension
in control of such a device could defeat DIKernel isolation.

In this case, to the best of the authors’ knowledge, no other
solution than IOMMU (Input-Output Memory Management Unit)
has been found. It creates a third memory space, besides virtual
and physical memory, often called bus memory. Hence, it is
possible to restrict external devices memory access to spe-
cific areas. In particular for DIKernel, it is possible to prevent
extensions from accessing the base kernel code or data and
restrict them to the extension domain.

Extensions are only one attack vector rootkits can use. Ex-
ploitable vulnerabilities can still be found in the base kernel.
While this is outside of our scope, DIKernel shows it is pos-
sible to securely isolate a part of the kernel from the rest
without relying on memory virtualization (LeVasseur et al., 2004;
Nikolaev and Back, 2013); being as secure but with a lower per-
formance cost.

A way of expanding DIKernel would be to divide the kernel
further and to use more domains. System calls could be a good
target since they are directly exposed to users, crafted argu-
ments can be passed to them, hence their vulnerabilities are
more likely to be exploited (Jones, 2011). Thus, it would be in-
teresting to remove system calls as an attack surface to the
rest of the kernel as we did with extensions. The challenge is
to make their code independent enough. This would require
careful optimization since system call performances are criti-
cal to the overall system.

8. Conclusion

We have presented DIKernel, a system to securely isolate kernel
extension execution and limit their memory access permis-
sion from the rest of the kernel components while being
performant, and compatible with existing kernel extensions.
As a result, it prevents malicious extensions from manipulat-
ing the entire operating system.

Unlike previous works, DIKernel achieves monolithic kernel
division in two address spaces without relying on memory
virtualization or on external hardware installation. It lever-
ages hardware component so called domain access control
introduced in ARM architecture.

Our experiments show that DIKernel involves negligible over-
head to the overall system performance yet efficiently prevents
known rootkit attacks.
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